Tag Archives: reformers

Hythane and fuel cells to power buses and trains.

Fuel cells are highly efficient and hardly polluting. They have a long history of use in space, and as a power source for submarines. They are beginning to appear powering city buses and intercity trains, at least in Europe, but not so much in the US or Canada. The business case for fuel cells is that they provide clean electric power to the train or bus, without the need for overhead wires. Avoiding wires helps make up for the high cost of hydrogen as a fuel. The reluctance to switch to fuel cells is the US is due to the longer distances that must be covered. The very low volumetric energy density of hydrogen means you need many filling stations with hydrogen fuel cells, and many fill ups per trip.

Energy density CNG, hydrogen, hythane.

On a mass-basis, hydrogen is energy dense, with 1 kg providing the same energy as 2-3 kg of gasoline. The problem with hydrogen (aside from the cost) is that its mass density is very low, less than 50g/liter, even at high pressure. This is terribly un-dense on a volume basis. It would take 20 liters of high pressure hydrogen (about 5 gallons) to take a car or bus as far as with one gallon of gasoline. Even with a huge tank of high pressure hydrogen, 150 gallons or so, a cross country trip would require some 12 fill ups, one every 250 miles, and this is an annoyance, besides being an infrastructure problem.

Then there is cost. In California, hydrogen costs far more than gasoline, between $12 and $15 per kg. That’s ten times as expensive as gasoline on a weight basis and 4 times as expensive on an energy basis. What’s needed is a cheaper, more energy-dense version of hydrogen, ideally one that can be used in both fuel cells and IC engines, and the version I’d like to suggest is hythane, a mix of methane (natural gas) and 20-30% hydrogen.

Hythane dispenser

Hythane has about 3 times the volumetric energy density of hydrogen, and about 1/3 the price. It makes less CO and CO2 pollution because there is far less carbon. On an energy basis, hythane costs just slightly more than gasoline, and requires less infrastructure. Natural gas is cheap and available, delivered by pipeline, without the need for hydrogen delivery trucks. Because hythane has about three times the volumetric energy density of hydrogen, the tank described above, that would give a 250 mile ride with hydrogen, would give 750 miles with hythane. This means a lot fewer fueling stations are needed, and a lot fewer forced stops. As a bonus, hythane can be used in (some) IC engines as well as in fuel cells.

Hydrogen for hythane-automotive use can be made on site, by electrolysis of water. Because there is relatively little hydrogen in the mix, only 25% by volume, or 8% on an energy basis, there is relatively little burden on the electric grid, and fueling will be a lot faster than with battery chargers. Hythane is already in use in buses in China and Canada. These are normal combustion buses but hythane works even better — more efficiently — with fuel cells (solid oxide fuel cells) and thus hythane provides a path to efficiency and greater fuel cell use.

Hythane bus, Montreal.

Natural gas does not work as well in fuel cells; it requires a pre-reformer to make some H2, and even then tends to coke. To be used in most fuel cells, the methane has to be converted, at lest partially into hydrogen and this takes heat energy and water.

CH4 + H2O + energy –> 3H2 + CO

Reforming is a lot easier with hythane; it can be done within the fuel cell. Within a SOFC, the hydrogen combustion, H2 + 1/2 O2 –> H2O, provides heat and water that helps feed the reforming reaction and helps prevent coking. Long term, fuel cells will likely dominate the energy future, but for now it’s nice to have a fuel that will work well in normal IC engines too.

Robert Buxbaum, April 28, 2021

My latest invention: improved fuel cell reformer

Last week, I submitted a provisional patent application for an improved fuel reformer system to allow a fuel cell to operate on ordinary, liquid fuels, e.g. alcohol, gasoline, and JP-8 (diesel). I’m attaching the complete text of the description, below, but since it is not particularly user-friendly, I’d like to add a small, explanatory preface. What I’m proposing is shown in the diagram, following. I send a hydrogen-rich stream plus ordinary fuel and steam to the fuel cell, perhaps with a pre-reformer. My expectation that the fuel cell will not completely convert this material to CO2 and water vapor, even with the pre-reformer. Following the fuel cell, I then use a water-gas shift reactor to convert product CO and H2O to H2 and CO2 to increase the hydrogen content of the stream. I then use a semi-permeable membrane to extract the waste CO2 and water. I recirculate the hydrogen and the rest of the water back to the fuel cell to generate extra power, prevent coking, and promote steam reforming. I calculate the design should be able to operate at, perhaps 0.9 Volt per cell, and should nearly double the energy per gallon of fuel compared to ordinary diesel. Though use of pure hydrogen fuel would give better mileage, this design seems better for some applications. Please find the text following.

Use of a Water-Gas shift reactor and a CO2 extraction membrane to improve fuel utilization in a solid oxide fuel cell system.

Inventor: Dr. Robert E. Buxbaum, REB Research, 12851 Capital St, Oak Park, MI 48237; Patent Pending.

Solid oxide fuel cells (SOFCs) have improved over the last 10 years to the point that they are attractive options for electric power generation in automobiles, airplanes, and auxiliary power supplies. These cells operate at high temperatures and tolerate high concentrations of CO, hydrocarbons and limited concentrations of sulfur (H2S). SOFCs can operate on reformate gas and can perform limited degrees of hydrocarbon reforming too – something that is advantageous from the stand-point of fuel logistics: it’s far easier to transport a small volume of liquid fuel that it is a large volume of H2 gas. The main problem with in-situ reforming is the danger of coking the fuel cell, a problem that gets worse when reforming is attempted with the more–desirable, heavier fuels like gasoline and JP-8. To avoid coking the fuel cell, heavier fuels are typically reforming before hand in a separate reactor, typically by partial oxidation at auto-thermal conditions, a process that typically adds nitrogen and results in the inability to use the natural heat given off by the fuel cell. Steam reforming has been suggested as an option (Chick, 2011) but there is not enough heat released by the fuel cell alone to do it with the normal fuel cycles.

Another source of inefficiency in reformate-powered SOFC systems is basic to the use of carbon-containing fuels: the carbon tends to leave the fuel cell as CO instead of CO2. CO in the exhaust is undesirable from two perspectives: CO is toxic, and quite a bit of energy is wasted when the carbon leaves in this form. Normally, carbon can not leave as CO2 though, since CO is the more stable form at the high temperatures typical of SOFC operation. This patent provides solutions to all these problems through the use of a water-gas shift reactor and a CO2-extraction membrane. Find a drawing of a version of the process following.

RE. Buxbaum invention: A suggested fuel cycle to allow improved fuel reforming with a solid oxide fuel cell

RE. Buxbaum invention: A suggested fuel cycle to allow improved fuel reforming with a solid oxide fuel cell

As depicted in Figure 1, above, the fuel enters, is mixed with steam or partially boiled water, and heated in the rectifying heat exchanger. The hot steam + fuel mix then enters a steam reformer and perhaps a sulfur removal stage. This would be typical steam reforming except for a key difference: the heat for reforming comes (at least in part) from waste heat of the SOFC. Normally speaking there would not be enough heat, but in this system we add a recycle stream of H2-rich gas to the fuel cell. This stream, produced from waste CO in a water-gas shift reactor (the WGS) shown in Figure 1. This additional H2 adds to the heat generated by the SOFC and also adds to the amount of water in the SOFC. The net effect should be to reduce coking in the fuel cell while increasing the output voltage and providing enough heat for steam reforming. At least, that is the thought.

SOFCs differ from proton conducting FCS, e.g. PEM FCs, in that the ion that moves is oxygen, not hydrogen. As a result, water produced in the fuel cell ends up in the hydrogen-rich stream and not in the oxygen stream. Having this additional water in the fuel stream of the SOFC can promote fuel reforming within the FC. This presents a difficulty in exhausting the waste water vapor in that a means must be found to separate it from un-combusted fuel. This is unlike the case with PEM FCs, where the waste water leaves with the exhaust air. Our main solution to exhausting the water is the use of a membrane and perhaps a knockout drum to extract it from un-combusted fuel gases.

Our solution to the problem of carbon leaving the SOFC as CO is to react this CO with waste H2O to convert it to CO2 and additional H2. This is done in a water gas shift reactor, the WGS above. We then extract the CO2 and remaining, unused water through a CO2- specific membrane and we recycle the H2 and unconverted CO back to the SOFC using a low temperature recycle blower. The design above was modified from one in a paper by PNNL; that paper had neither a WGS reactor nor a membrane. As a result it got much worse fuel conversion, and required a high temperature recycle blower.

Heat must be removed from the SOFC output to cool it to a temperature suitable for the WGS reactor. In the design shown, the heat is used to heat the fuel before feeding it to the SOFC – this is done in the Rectifying HX. More heat must be removed before the gas can go to the CO2 extractor membrane; this heat is used to boil water for the steam reforming reaction. Additional heat inputs and exhausts will be needed for startup and load tracking. A solution to temporary heat imbalances is to adjust the voltage at the SOFC. The lower the voltage the more heat will be available to radiate to the steam reformer. At steady state operation, a heat balance suggests we will be able to provide sufficient heat to the steam reformer if we produce electricity at between 0.9 and 1.0 Volts per cell. The WGS reactor allows us to convert virtually all the fuel to water and CO2, with hardly any CO output. This was not possible for any design in the PNNL study cited above.

The drawing above shows water recycle. This is not a necessary part of the cycle. What is necessary is some degree of cooling of the WGS output. Boiling recycle water is shown because it can be a logistic benefit in certain situations, e.g. where you can not remove the necessary CO2 without removing too much of the water in the membrane module, and in mobile military situations, where it’s a benefit to reduce the amount of material that must be carried. If water or fuel must be boiled, it is worthwhile to do so by cooling the output from the WGS reactor. Using this heat saves energy and helps protect the high-selectivity membranes. Cooling also extends the life of the recycle blower and allows the lower-temperature recycle blowers. Ideally the temperature is not lowered so much that water begins to condense. Condensed water tends to disturb gas flow through a membrane module. The gas temperatures necessary to keep water from condensing in the module is about 180°C given typical, expected operating pressures of about 10 atm. The alternative is the use of a water knockout and a pressure reducer to prevent water condensation in membranes operated at lower temperatures, about 50°C.

Extracting the water in a knockout drum separate from the CO2 extraction has the secondary advantage of making it easier to adjust the water content in the fuel-gas stream. The temperature of condensation can then be used to control the water content; alternately, a separate membrane can extract water ahead of the CO2, with water content controlled by adjusting the pressure of the liquid water in the exit stream.

Some description of the membrane is worthwhile at this point since a key aspect of this patent – perhaps the key aspect — is the use of a CO2-extraction membrane. It is this addition to the fuel cycle that allows us to use the WGS reactor effectively to reduce coking and increase efficiency. The first reasonably effective CO2 extraction membranes appeared only about 5 years ago. These are made of silicone polymers like dimethylsiloxane, e.g. the Polaris membrane from MTR Inc. We can hope that better membranes will be developed in the following years, but the Polaris membrane is a reasonably acceptable option and available today, its only major shortcoming being its low operating temperature, about 50°C. Current Polaris membranes show H2-CO2 selectivity about 30 and a CO2 permeance about 1000 Barrers; these permeances suggest that high operating pressures would be desirable, and the preferred operation pressure could be 300 psi (20 atm) or higher. To operate the membrane with a humid gas stream at high pressure and 50°C will require the removal of most of the water upstream of the membrane module. For this, I’ve included a water knockout, or steam trap, shown in Figure 1. I also include a pressure reduction valve before the membrane (shown as an X in Figure 1). The pressure reduction helps prevent water condensation in the membrane modules. Better membranes may be able to operate at higher temperatures where this type of water knockout is not needed.

It seems likely that, no matter what improvements in membrane technology, the membrane will have to operate at pressures above about 6 atm, and likely above about 10 atm (upstream pressure) exhausting CO2 and water vapor to atmosphere. These high pressures are needed because the CO2 partial pressure in the fuel gas leaving the membrane module will have to be significantly higher than the CO2 exhaust pressure. Assuming a CO2 exhaust pressure of 0.7 atm or above and a desired 15% CO2 mol fraction in the fuel gas recycle, we can expect to need a minimum operating pressure of 4.7 atm at the membrane. Higher pressures, like 10 or 20 atm could be even more attractive.

In order to reform a carbon-based fuel, I expect the fuel cell to have to operate at 800°C or higher (Chick, 2011). Most fuels require high temperatures like this for reforming –methanol being a notable exception requiring only modest temperatures. If methanol is the fuel we will still want a rectifying heat exchanger, but it will be possible to put it after the Water-Gas Shift reactor, and it may be desirable for the reformer of this fuel to follow the fuel cell. When reforming sulfur-containing fuels, it is likely that a sulfur removal reactor will be needed. Several designs are available for this; I provide references to two below.

The overall system design I suggest should produce significantly more power per gm of carbon-based feed than the PNNL system (Chick, 2011). The combination of a rectifying heat exchange, a water gas reactor and CO2 extraction membrane recovers chemical energy that would otherwise be lost with the CO and H2 bleed steam. Further, the cooling stage allows the use of a lower temperature recycle pump with a fairly low compression ratio, likely 2 or less. The net result is to lower the pump cost and power drain. The fuel stream, shown in orange, is reheated without the use of a combustion pre-heater, another big advantage. While PNNL (Chick, 2011) has suggested an alternative route to recover most of the chemical energy through the use of a turbine power generator following the fuel cell, this design should have several advantages including greater reliability, and less noise.

Claims:

1.   A power-producing, fuel cell system including a solid oxide fuel cell (SOFC) where a fuel-containing output stream from the fuel cell goes to a regenerative heat exchanger followed by a water gas shift reactor followed by a membrane means to extract waste gases including carbon dioxide (CO2) formed in said reactor. Said reactor operating a temperatures between 200 and 450°C and the extracted carbon dioxide leaving at near ambient pressure; the non-extracted gases being recycled to the fuel cell.

Main References:

The most relevant reference here is “Solid Oxide Fuel Cell and Power System Development at PNNL” by Larry Chick, Pacific Northwest National Laboratory March 29, 2011: http://www.energy.gov/sites/prod/files/2014/03/f10/apu2011_9_chick.pdf. Also see US patent  8394544. it’s from the same authors and somewhat similar, though not as good and only for methane, a high-hydrogen fuel.

Robert E. Buxbaum, REB Research, May 11, 2015.

Hydrogen Cylinders versus Hydrogen Generators for Gas Chromatography

Hydrogen is an excellent cover gas for furnace brazing and electronic manufacture; it’s used as a carrier gas for gas chromatography or as a flame-detector gas, and it’s a necessity for ammonia production and most fuel cells. If you are working in one of these fields you can buy bottled hydrogen (cylinders) or a hydrogen generator . The main difference is cost. Cylinder hydrogen is typically the choice for small demand applications. A palladium membrane hydrogen purifier is added ( we make these) if high purity is important. Hydrogen generators are more generally used for larger -demand applications. They are more expensive at the start, but provide convenience and long-term savings. The essay below goes through the benefits and drawbacks of each as applies to gas chromatography.

Point of use Cylinder Hydrogen Is Simple and Allows Easy Monitoring and Control. At the smallest laboratories, those with one or two gas chromatographs, you’ll generally find you are best served by a single hydrogen cylinder for each GC, aided by a hydrogen purifier of some sort. This is called “point of use” hydrogen. Each cylinder is typically belted to a wall and used until the cylinder is empty. At that point, the application is stopped (the purifier is often stopped too) and a new cylinder switched in. There is usually a short break- in period where GC results are unreliable, but after one or two runs, everything is as before. The biggest advantage here is simplicity including ease of pressure control and monitoring. You can always check the pressure right by the GC and adjust it as needed. Long term cost is usually higher, though, and you have to stop whenever a cylinder needs switching.

Multi-cylinder Systems or Generators Provide Fewer interruptions. Larger laboratories tend to use multiple hydrogen cylinders with complex switchover systems, or hydrogen generators. Multiple cylinders are racked together and connected to a manifold and a single, larger purifier (we make these too). Tanks are emptied in series so that there is no disruption. When each tank empties, it is switched out in a way that maintains the flow. One problem is that the pressure and flow does not typically stay constant as the cylinders switch and as additional GCs or other processes are brought on line or taken off.

Purity can suffer too, as there is more tubing and more connections in the system. There is thus more room for leaks and degassing. This can be solved by replacing the single large purifier by point-of-use purifiers, installed just prior to the GC or other application.

Cylinder packs come with a safety disadvantage: with so many cylinders, there is a potential for disastrous leaks or mistakes that empty many cylinders at once — too fast to disperse the large amount of hydrogen released. Maintenance becomes an issue too since the manifolds and automatic switches become complicated quickly. Complex systems can require a trained technician to trouble-shoot and maintain; I sometimes do that, and customers don’t seem to mind, but it’s an issue.

Hydrogen generators can be cheaper and you avoid cylinder changes; Hydrogen generators are fed by tap-water or a very large tank of methanol -water. Running out is less of a problem, and adding more water or methanol to the tank does not affect the hydrogen output.

Safety is improved by limiting the output of the generator to the amount the room will vent. A room with 100 ft3 of air and some circulation can generally host a hydrogen generator 2-3 slpm output with no fear of reaching explosive limits. It’s also worthwhile to fit the hydrogen generator with an alarm or safety that shuts down if a leak is detected (we provide these for purifiers too).

Generator Options: Methanol-based hydrogen generators or electrolysis. Both options are are available in outputs from 250 ccm to 50 slpm. For larger-yet output, you’ll probably want an electrolyzer. In general, either generator will pay for itself in the first year if you use the gas, continuously, or nearly so.

In Electrolytic Hydrogen generators Purified water, either purchased separately, or purified on-site is mixed with an electrolyte, generally KOH, and converted to hydrogen and oxygen by the electrolytic reaction H2O –> H2 + ½ O2.  As the hydrogen produced is generally “wet”, containing water vapor, the hydrogen is then purified by use of a desiccant, or by passage through a metal membrane purifier. Desiccants are cheaper, but the gas is at best 99.9% pure, good enough to feed FIDs, but not good enough to be used as a carrier gas, or for chemical production. Over time desiccants wear out; they require constant monitoring and changing as they become filled with water vapor. Often electrolytic hydrogen generators also require the addition of a caustic electrolyte solution as caustic can leak out, or leave by corrosion mechanisms.

In Reformer-based hydrogen generators a methanol-water mix is pumped to about 300 psi and heated to about 350 °C. It is then sent over a catalyst where it is converted to a hydrogen-containing gas-mix by the reaction CH3OH + H2O –> 3H2 + CO2. Pure hydrogen is extracted from the gas mix by passing it through a membrane, either within the reactor (a membrane reactor), or by use of a membrane purifier external to the reactor.

Cost comparisons. Hydrogen in cylinders is fairly expensive if you use gas continuously. In Detroit, where we are, hydrogen costs about $70 each cylinder low low-purity gas, or $200 for high purity gas. Each cylinder contains 135 scf of gas. If you use 1/10 cylinder per day, you will find you’re spending about $7,300 per year on hydrogen gas, with another $1000 spent on cylinder rental and delivery. This is about the cost of a comparable hydrogen generator plus the water or methanol and electricity run it. If you use significantly less hydrogen you save money with cylinders, if you use more there is significant savings with a generator.

Most hydrogen generators have delivery pressure limitations compared to cylinders. Cylinders have no problem supplying hydrogen at 200 psi or greater pressures. By contrast, generators are limited to only the 60-150 psig range only. This pressure limitation is not likely to be a problem, even for GCs that need higher pressure gas or when the generator must be located far from the  instruments, but you have to be aware of the issue when buying the generator. Electrolysis systems that use caustic provide the highest pressures, but they tend to be the most expensive, and least safe as the operate hot and caustic can drip out. Fuel cell generators and reformers provide lower pressure gas (90 psi maximum, typically), but they are safer. In general generators should be located close to the instruments to minimize supply line pressure drop. If necessary it can pay to use cylinders and generators or several generators to provide a range of delivery pressures and a shorter distance between the hydrogen generator and the application.

Click here for the prices of REB Research hydrogen generators. By comparison, I’ve attached prices for electrolysis-based hydrogen generators here (it’s 2007 data; please check the company yourself for current prices). Finally, the price of membrane purifiers is listed here.

Maintenance required for optimal performance. Often electrolytic hydrogen generators require the addition of a caustic electrolyte solution; desiccant purified gas will require the monitoring and changing of desiccant cartridges to remove residual moisture from the hydrogen. Palladium membrane purifiers systems, and reformer systems need replacement thermocouples and heaters every few years. Understanding the required operating and maintenance procedures is an important part of making an informed decision.

Conclusion:

Cylinder hydrogen supplies are the simplest sources for labs but present a safety, cost, and handling concerns, particularly associated with cylinder change-outs. Generators tend to be more up-front expensive than cylinders but offer safety benefits as well as benefits of continuous supply and consistent purity. They are particularly attractive alternative for larger labs where large hydrogen supply can present larger safety risks, and larger operating costs.

R. E. Buxbaum, January 30, 2013, partially updated Apr. 2022.