Tag Archives: pollution

Follow the feces; how to stop the poisoning

In Oakland county, we regularly poison our basements and our lake St Clair beaches with feces — and potentially our water supply too. We have a combined storm and sanitary sewer system that mixes feces-laden sanitary sewage with rainwater, and our pipes are too old and small to handle the amount of storm water from our larger rains. A group called “Save Lake St. Clair” is up in arms but the current commissioner claims the fault is not his. It’s global warming, he says, and the rains are bigger now. Maybe, or maybe the fault is wealth: more and more of the county is covered by asphalt, so less rain water can soak in the ground. Whatever the cause, the Commissioner should deal with it (I’m running for water commissioner, BTW). As the chart of toxic outfalls shows, we’ve had regular toxic sewage discharges into the Red Run basically every other week, with no exceptional rainfalls: only 0.9″ to 1.42″.

Toxic outfalls into lake St Clair, Feb 20 to Mar 20, 2016. There were also two outfalls into the Rouge in this period. These are too many to claim they are once in hundred-year events.

Toxic outfalls into lake St Clair, Feb 20 to Mar 20, 2016. There were also two outfalls into the Rouge in this period. These are too many to claim they are once in hundred-year events.

Because we have a combined system, the liquid level rises in our sewers whenever it rains. When the level is above the level of a basement floor drain, mixed sewage comes up into the basement. A mix of storm water comes up mixed with poop and anything else you and your neighbors flush down. Mixed sewage can come up even if the sewers were separate, but far less often. Currently most of the dry outfall from our old, combined sewers is sent to Detroit’s Waste Water Treatment plant near Zug Island. When there is a heavy rain, the pipe to Zug is overwhelmed. We avoid flooding your basement every other week by diverting as much as we can of the mixed storm water and septic sewage to lake St. Clair. This is poop, barely treated, and the fishermen and environmentalists hate it.

The beaches along Lake St Clair are closed every other week: whenever the pipes to Detroit start getting overwhelmed, whenever there is about 1″ or rain. Worse yet, the sewage is enters the lake just upstream of the water intake on Belle Isle, see map below. Overflow sewage follows the red lines entering the Clinton River through the GW Kuhn — Red Run Drain or through the North Branch off the River. From there it flows out into Lake St. Clair near Selfridge ANG, generally hugging the Michigan shore of the lake, following the light blue line to poison the metro beaches. it enters the water intake for the majority of Oakland County at the Belle Island water intakes, lower left.

Follow the feces to see why our beeches are polluted. It's just plain incompetence.

The storm water plus septic sewage mix is not dumped raw into lake St. Clair, but it’s nearly raw. The only treatment is to be spritzed with bleach in the Red Run Drain. The result is mats of black gunk with floating turds, toilet paper and tampons. This water is filtered before we drink it, and it’s sprayed with more chlorine, but that’s not OK. We can do much better than this. We don’t have to regularly dump poop into the river just upstream of our water intake. I favor a two-prong solution.

The first, quick solution is to have better pumps to send the sewage to Detroit. This is surprisingly expensive since we still have to treat the rain water. Also it doesn’t take care of the biggest rains; there is a limit to what our pipes will handle, but it stops some basement flooding, and it avoids some poisoning of our beaches and drinking water.

This is our combined sewer system showing a tunnel cistern (yuk) and the outflow into the Red Run. We can do better

A combined sewer system showing a tunnel cistern. Outflow goes into the Red Run. We can do better.

A second, longer term solution is to disentangle the septic from the storm sewers. My approach would be to do this in small steps, beginning by diverting some storm runoff into small wetlands or French drain retention. Separating the sewers this way is cheaper and more environmentally sound than trying to treat the mixed flow in Detroit, and the wetlands and drains would provide pleasant park spaces, but the project will take decades to complete. If done right, this would save quite a lot over sending so much liquid to Detroit, and it’s the real solution to worries about your floor drains back-flowing toxic sludge into your basement.

The incumbent, I fear, has little clue about drainage or bio-treatment. His solution is to build a $40MM tunnel cistern along Middlebelt road. This cistern only holds 3 MM gallons, less than 1/100 of the volume needed for even a moderate rain. Besides, at $13/gallon of storage, it is very costly solution compared to my preference — a French drain (costs about 25¢/gallon of storage). The incumbents cistern has closed off traffic for months between 12 and 13 mile, and is expected to continue for a year, until January, 2017. It doesn’t provide any bio-cleaning, unlike a French drain, and the cistern leaks. Currently groundwater is leaking in. This has caused the lowering of the water table and the closure of private wells. If the leak isn’t fixed , the cistern will leak septic sewage into the groundwater, potentially infecting people for miles around with typhus, cholera, and all sorts of 3rd world plagues.

There is also an explosion hazard to the incumbent’s approach. A tunnel cistern like this blew up near my undergraduate college sending manhole covers flying. This version has much bigger manhole covers: 15′ cement, not 2′ steel. If someone pours gasoline down the drain during a rainstorm and if a match went in later, the result could be deadly. The people building these projects are the same ones who fund the incumbent’s campaign, and I suspect they influenced him for this mis-chosen approach. They are the folks I fear he goes to for engineering advice. If you’d like to see a change for the better. Elect me, Elect an engineer.

Dr. Robert E. Buxbaum, March 26, 2016. Go here to volunteer or contribute.

US cancer rates highest on the rivers, low in mountains, desert

Sometimes I find I have important data that I can’t quite explain. For example, cancer rates in the US vary by more than double from county to county, but not at random. The highest rates are on the rivers, and the lowest are in the mountains and deserts. I don’t know why, but the map shows it’s so.

Cancer rate map of the US age adjusted

Cancer death rates map of the US age adjusted 2006-2010, by county. From www.statecancerprofiles.cancer.gov.

Counties shown in red on the map have cancer death rates between 210 and 393 per 100,000, more than double, on average the counties in blue. These red counties are mostly along the southern Mississippi, the Arkansas branching to its left; along the Alabama, to its right, and along the Ohio and the Tennessee rivers (these rivers straddle Kentucky). The Yukon (Alaska) shows up in bright red, while Hawaii (no major rivers) is blue; southern Alaska (mountains) is also in blue. In orange, showing less-elevated cancer death, you can make out the Delaware river between NJ and DC, the Missouri heading Northwest from the Mississippi, the Columbia, and the Colorado between the Grand Canyon and Las Vegas. For some reason, counties near the Rio Grande do not show elevated cancer death rates. nor does the Northern Mississippi and the Colorado south of Las Vegas.

Contrasting this are areas of low cancer death, 56 to 156 deaths per year per 100,000, shown in blue. These appear along the major mountain ranges: The Rockies (both in the continental US and Alaska), the Sierra Nevada, and the Appalachian range. Virtually every mountain county appears in blue. Desert areas of the west also appear as blue, low cancer regions: Arizona, New Mexico, Utah, Idaho, Colorado, south-west Texas and southern California. Exceptions to this are the oasis areas in the desert: Lake Tahoe in western Nevada and Lake Meade in southern nevada. These oases stand out in red showing high cancer-death rates in a sea of low. Despite the AIDS epidemic and better health care, the major cities appear average in terms of cancer. It seems the two effects cancel; see the cancer incidence map (below).

My first thought of an explanation was pollution: that the mountains were cleaner, and thus healthier, while industry had polluted the rivers so badly that people living there were cancer-prone. I don’t think this explanation fits, quite, since I’d expect the Yukon to be pollution free, while the Rio Grande should be among the most polluted. Also, I’d expect cities like Detroit, Cleveland, Chicago, and New York to be pollution-heavy, but they don’t show up for particularly high cancer rates. A related thought was that specific industries are at fault: oil, metals, chemicals, or coal, but this too doesn’t quite fit: Utah has coal, southern California has oil, Colorado has mining, and Cleveland was home to major Chemical production.

Another thought is poverty: that poor people live along the major rivers, while richer, healthier ones live in the mountains. The problem here is that the mountains and deserts are home to some very poor counties with low cancer rates, e.g. in Indian areas of the west and in South Florida and North Michigan. Detroit is a very poor city, with land polluted by coal, steel, and chemical manufacture — all the worst industries, you’d expect. We’re home to the famous black lagoon, and to Zug Island, a place that looks like Hades when seen from the air. The Indian reservation areas of Arizona are, if anything, poorer yet. 

Cancer incidence map

Cancer incidence,age adjusted, from statecancerprofiles.cancer.gov

My final thought was that people might go to the river to die, but perhaps don’t get cancer by the river. To check this explanation, I looked at the map of cancer incidence rates. While many counties repress their cancer rate data, the pattern in the remaining ones is similar to that for cancer death: the western mountain and desert counties show less than half the incidence rates of the counties along the southern Mississippi, the Arkansas, and the Ohio rivers. The incidence rates are somewhat elevated in the north-east, and lower on the Yukon, but otherwise it’s the same map as for cancer death. Bottom line: I’m left with an observation of the cancer pattern, but no good explanation or model.

Dr. Robert E. Buxbaum, May 1, 2014. Two other unsolved mysteries I’ve observed: the tornado drought of the last few years, and that dilute toxins and radiation may prevent cancer. To do science, you first observe, and then try to analyze.

Where does industrial CO2 come from? China mostly.

The US is in the process of imposing strict regulations on carbon dioxide as a way to stop global warming and climate change. We have also closed nearly new power plants, replacing them with cleaner options like a 2.2 billion dollar solar-electric generator in lake Ivanpah, and this January our president imposed a ban on lightbulbs of 60 W and higher. But it might help to know that China produced twice as much of the main climate change gas, carbon dioxide (CO2) as the US in 2012, and the ratio seems to be growing. One reason China produces so much CO2 is that China generates electricity from dirty coal using inefficient turbines.

Where the CO2 is coming from: a fair amount from the US and Europe, but mostly from China and India too.

From EDGAR 4.2; As of 2012 twice as much carbon dioxide, CO2 is coming from China as from the US and Europe.

It strikes me that a good approach to reducing the world’s carbon-dioxide emissions is to stop manufacturing so much in China. Our US electric plants use more efficient generating technology and burn lower carbon fuels than China does. We then add scrubbers and pollution reduction equipment that are hardly used in China. US manufacture thus produces not only less carbon dioxide than China, it also avoids other forms of air pollution, like NOx and SOx. Add to this the advantage of having fewer ships carrying products to and from China, and it’s clear that we could significantly reduce the world’s air problems by moving manufacture back to the USA.

I should also note that manufacture in the US helps the economy by keeping jobs and taxes here. A simple way to reduce purchases from China and collect some tax revenue would be to impose an import tariff on Chinese goods based, perhaps on the difference in carbon emissions or other pollution involved in Chinese manufacture and transport. While I have noted a lack of global warming, sixteen years now, that doesn’t mean I like pollution. It’s worthwhile to clean the air, and if we collect tariffs from the Chinese and help the US economy too, all the better.

Robert E. Buxbaum, February 24, 2014. Nuclear power produces no air pollution and uses a lot less land area compared to solar and wind projects.