Tag Archives: hydrogen

Hydrogen permeation rates in Inconel, Hastelloy and stainless steels.

Some 20 years ago, I published a graph of the permeation rate for hydrogen in several metals at low pressure, See the graph here, but I didn’t include stainless steel in the graph.

Hydrogen permeation in clean SS-304; four research groups’ data.

One reason I did not include stainless steel was there were many stainless steels and the hydrogen permeation rates were different, especially so between austenitic (FCC) steels and ferritic steels (BCC). Another issue was oxidation. All stainless steels are oxidized, and it affect H2 permeation a lot. You can decrease the hydrogen permeation rate significantly by oxidation, or by surface nitriding, etc (my company will even provide this service). Yet another issue is cold work. When  an austenitic stainless steel is worked — rolled or drawn — some Austinite (FCC) material transforms to Martisite (a sort of stretched BCC). Even a small amount of martisite causes an order of magnitude difference in the permeation rate, as shown below. For better or worse, after 20 years, I’m now ready to address H2 in stainless steel, or as ready as I’m likely to be.

Hydrogen permeation data for SS 340 and SS 321.

Hydrogen permeation in SS 340 and SS 321. Cold work affects H2 permeation more than the difference between 304 and 321; Sun Xiukui, Xu Jian, and Li Yiyi, 1989

The first graph I’d like to present, above, is a combination of four research groups’ data for hydrogen transport in clean SS 304, the most common stainless steel in use today. SS 304 is a ductile, austenitic (FCC), work hardening, steel of classic 18-8 composition (18% Cr, 8% Ni). It shares the same basic composition with SS 316, SS 321 and 304L only differing in minor components. The data from four research groups shows a lot of scatter: a factor of 5 variation at high temperature, 1000 K (727 °C), and almost two orders of magnitude variation (factor of 50) at room temperature, 13°C. Pressure is not a factor in creating the scatter, as all of these studies were done with 1 atm, 100 kPa hydrogen transporting to vacuum.

The two likely reasons for the variation are differences in the oxide coat, and differences in the amount of cold work. It is possible these are the same explanation, as a martensitic phase might increase H2 permeation by introducing flaws into the oxide coat. As the graph at left shows, working these alloys causes more differences in H2 permeation than any difference between alloys, or at least between SS 304 and SS 321. A good equation for the permeation behavior of SS 304 is:

P (mol/m.s.Pa1/2) = 1.1 x10-6 exp (-8200/T).      (H2 in SS-304)

Because of the song influence of cold work and oxidation, I’m of the opinion that I get a slightly different, and better equation if I add in permeation data from three other 18-8 stainless steels:

P (mol/m.s.Pa1/2) = 4.75 x10-7 exp (-7880/T).     (H2 in annealed SS-304, SS-316, SS-321)

Screen Shot 2017-12-16 at 10.37.37 PM

Hydrogen permeation through several common stainless steels, as well as Inocnel and Hastelloy

Though this result is about half of the previous at high temperature, I would trust it better, at least for annealed SS-304, and also for any annealed austenitic stainless steel. Just as an experiment, I decided to add a few nickel and cobalt alloys to the mix, and chose to add data for inconel 600, 625, and 718; for kovar; for Hastelloy, and for Fe-5%Si-5%Ge, and SS4130. At left, I pilot all of these on one graph along with data for the common stainless steels. To my eyes the scatter in the H2 permeation rates is indistinguishable from that SS 304 above or in the mixed 18-8 steels (data not shown). Including these materials to the plot decreases the standard deviation a bit to a factor of 2 at 1000°K and a factor of 4 at 13°C. Making a least-square analysis of the data, I find the following equation for permeation in all common FCC stainless steels, plus Inconels, Hastelloys and Kovar:

P (mol/m.s.Pa1/2) = 4.3 x10-7 exp (-7850/T).

This equation is near-identical to the equation above for mixed, 18-8 stainless steel. I would trust it for annealed or low carbon metal (SS-304L) to a factor of 2 accuracy at high temperatures, or a factor of 4 at low temperatures. Low carbon reduces the tendency to form Martinsite. You can not use any of these equations for hydrogen in ferritic (BCC) alloys as the rates are different, but this is as good as you’re likely to get for basic austenitc stainless and related materials. If you are interested in the effect of cold work, here is a good reference. If you are bothered by the square-root of pressure driving force, it’s a result of entropy: hydrogen travels in stainless steel as dislocated H atoms and the dissociation H2 –> 2 H leads to the square root.

Robert Buxbaum, December 17, 2017. My business, REB Research, makes hydrogen generators and purifiers; we sell getters; we consult on hydrogen-related issues, and will (if you like) provide oxide (and similar) permeation barriers.

A clever, sorption-based, hydrogen pump

Hydrogen-power ed fuel cells provide a lot of advantages over batteries, e.g. for drones and extended range vehicles, but part of the challenge is compressing the hydrogen. On solution I’d proposed is a larger version of this steam-powered compressor, another is a membrane reactor hydrogen generator, and a few weeks ago, I wrote about an other clever innovative solutions: an electrochemical hydrogen pump. It was a fuel cell operating backwards, pumping was very efficient and compact, but the pressure was borne by the fuel cell membranes, so the pump is only suitable at low pressure differentials. I’d now like to describe a different, very clever hydrogen pump, one that operates by metallic hydride sorption and provides very high pressure.

Hydride sorption -desorption pressures vs temperature.

Hydride sorption -desorption pressures vs temperature, from Dhinesh et al.

The basic metal hydride reaction is M + nH2 <–> MH2n. Where M is a metal or metallic alloy. While most metals will undergo this reaction at some appropriate temperature and pressure, the materials of interest are exothermic hydrides that undergo a nearly stoichiometric absorption or desorption reaction at temperatures near 1 atm, temperatures near room temperature. The plot at right presents the plateau pressure for hydrogen absorption/ desorption in several, common metal hydrides. The slope is proportionals to the heat of sorption. There is a red box shown for the candidates that sorb or desorb between 1 and 10 atmospheres and 25 and 100 °C. Sorbants whose lines pass through that box are good candidates for pump use. The ones with a high slope (high heat of sorption) in particular, if you want a convenient source of very high pressure.

To me, NaAlH4 is among the best of the materials, and certainly serves as a good example for how the pump works. The basic reaction, in this case is:

NaAl + 2H2 <–> NaAlH4

The line for this reaction crosses the 1 atm red line at about 30°C suggesting that each mol of NaAl material will absorb 2 mols of hydrogen at 1 am and normal room temperatures: 20-30°C. Assume the pump contains 100 g of NaAl (2.0 mols). We can expect it will 4 mols of hydrogen gas, about 90 liters at this temperature. If this material in now heated to 250°C, it will desorb most of the hydrogen (80% perhaps, 72 liters) at 100 atm, or 1500 psi. This is a remarkably high pressure boost; 1500 psi hydrogen is suitable for use filling the high pressure tank of a hydrogen-based, fuel cell car.

But there is a problem: it will take 2-3 hours to cycle the sober; the absorb hydrogen at low pressure, heat, desorb and cycle back to low temperature. If you only can pump 72 liters in 2-3 hours, this will not be an effective pump for automobiles. Even with several cells operating in parallel, it will be hard to fill the fuel tank of a fuel-cell car. The output is enough for electric generators, or for the small gas tank of a fuel cell drone, or for augmenting the mpg of gasoline automobiles. If one is interested in these materials, my company, REB Research will supply them in research quantities.

Properties of Metal Hydride materials; Dhanesh Chandra,* Wen-Ming Chien and Anjali Talekar, Material Matters, Volume 6 Article 2

Properties of Metal Hydride materials; Dhanesh Chandra,* Wen-Ming Chien and Anjali Talekar, Material Matters, Volume 6 Article 2

At this point, I can imagine you saying that there is a simple way to make up for the low output of a pump with 100g of sorbent: use more, perhaps 10 kg distributed over 100 cells. The alloys don’t cost much in bulk, see chart above (they’re a lot more expensive in small quantities). With 100 times more sorbent, you’ll pump 100 times faster, enough for a fairly large hydrogen generator, like this one from REB. This will work, but you don’t get economies of scale. With standard, mechanical pumps give you a decent economy of scale — it costs 3-4 times as much for each 10 times increase in output. For this reason, the hydride sorption pump, though clever appears to be destined for low volume applications. Though low volume might involve hundreds of kg of sorbent, at some larger value, you’re going to want to use a mechanical pump.

Other uses of these materials include hydrogen storageremoval of hydrogen from a volume, e.g. so it does not mess up electronics, or for vacuum pumping from a futon reactor. I have sold niobium screws for hydrogen sorption in electronic packages, and my company provides chemical sorbers for hydrogen removal from air. For more of our products, visit www.rebresearch.com/catalog.html

Robert Buxbaum, May 26, 2017. 

The hydrogen jerrycan

Here’s a simple invention, one I’ve worked on off-and-on for years, but never quite built. I plan to work on it more this summer, and may finally build a prototype: it’s a hydrogen Jerry can. The need to me is terrifically obvious, but the product does not exist yet.

To get a view of the need, imagine that it’s 5-10 years in the future and you own a hydrogen, fuel cell car. You’ve run out of gas on a road somewhere, per haps a mile or two from the nearest filling station, perhaps more. You make a call to the AAA road-side service and they show up with enough hydrogen to get you to the next filling station. Tell me, how much hydrogen did they bring? 1 kg, 2 kg, 5 kg? What did the container look like? Is there one like it in your garage?

The original, German "Jerry" can. It was designed at the beginning of WWII to help the Germans to overrun Europe.

The original, German “Jerry” can. It was designed at the beginning of WWII to help the Germans to overrun Europe. I imagine the hydrogen version will be red and roughly these dimensions, though not quite this shape.

I figure that, in 5-10 years these hydrogen containers will be so common that everyone with a fuel cell car will have one, somewhere. I’m pretty confident too that hydrogen cars are coming soon. Hydrogen is not a total replacement for gasoline, but hydrogen energy provides big advantages in combination with batteries. It really adds to automotive range at minimal cost. Perhaps, of course this is wishful thinking as my company makes hydrogen generators. Still it seems worthwhile to design this important component of the hydrogen economy.

I have a mental picture of what the hydrogen delivery container might look like based on the “Jerry can” that the Germans (Jerrys) developed to hold gasoline –part of their planning for WWII. The story of our reverse engineering of it is worth reading. While the original can was green for camouflage, modern versions are red to indicate flammable, and I imagine the hydrogen Jerry will be red too. It must be reasonably cheap, but not too cheap, as safety will be a key issue. A can that costs $100 or so does not seem excessive. I imagine the hydrogen Jerry can will be roughly rectangular like the original so it doesn’t roll about in the trunk of a car, and so you can stack a few in your garage, or carry them conveniently. Some folks will want to carry an extra supply if they go on a long camping trip. As high-pressure tanks are cylindrical, I imagine the hydrogen-jerry to be composed of two cylinders, 6 1/2″ in diameter about. To make the rectangular shape, I imagine the cylinders attached like the double pack of a scuba diver. To match the dimensions of the original, the cylinders will be 14″ to 20″ tall.

I imagine that the hydrogen Jerry can will have at least two spouts. One spout so it can be filled from a standard hydrogen dispenser, and one so it can be used to fill your car. I suspect there may be an over-pressure relief port as well, for safety. The can can’t be too heavy, no more than 33 lbs, 15 kg when full so one person can handle it. To keep the cost and weight down, I imagine the product will be made of marangeing steel wrapped in kevlar or carbon fiber. A 20 kg container made of these materials will hold 1.5 to 2 kg of hydrogen, the equivalent of 2 gallons of gasoline.

I imagine that the can will have at least one handle, likely two. The original can had three handles, but this seems excessive to me. The connection tube between two short cylinders could be designed to serve as one of the handles. For safety, the Jerrycan should have a secure over-seal on both of the fill-ports, ideally with a safety pin latch minimize trouble in a crash. All the parts, including the over- seal and pin, should be attached to the can so that they are not easily lost. Do you agree? What else, if anything, do you imagine?

Robert Buxbaum, February 26, 2017. My company, REB Research, makes hydrogen generators and purifiers.

A very clever hydrogen pump

I’d like to describe a most clever hydrogen pump. I didn’t invent it, but it’s awfully cool. I did try to buy one from “H2 Pump,” a company that is now defunct, and I tried to make one. Perhaps I’ll try again. Here is a diagram.

Electrolytic membrane H2 pump

Electrolytic membrane H2 pump

This pump works as the reverse of of a PEM fuel cell. Hydrogen gas is on both sides of a platinum-coated, proton-conducting membrane — a fuel cell membrane. As in a PEM fuel cell, the platinum splits the hydrogen molecules into H atoms. An electrode removes electrons to form H+ ions on one side of the membrane; the electrons are on the other side of the membrane (the membrane itself is chosen to not conduct electricity). The difference from the fuel cell is that, for the pump you apply a energy (voltage) to drive hydrogen across the membrane, to a higher pressure side; in a fuel cell, the hydrogen goes on its own to form water, and you extract electric energy.

As shown, the design is amazingly simple and efficient. There are no moving parts except for the hydrogen itself. Not only do you pump hydrogen, but you can purify it as well, as most impurities (nitrogen, CO2) will not go through the membrane. Water does permeate the membrane, but for many applications, this isn’t a major impurity. The amount of hydrogen transferred per plate, per Amp-second of current is given by Faraday’s law, an equation that also shows up in my discussion of electrolysis, and of electroplating,

C= zFn.

Here, C is the current in Amp-seconds, z is the number or electrons transferred per molecule, in this case 2, F is Faraday’s constant, 96,800, n is the number of mols transferred.  If only one plate is used, you need 96,800 Amp-seconds per gram of hydrogen, 53.8 Amp hours per mol. Most membranes can operate at well at 1.5 Amp per cm2, suggesting that a 1.1 square-foot membrane (1000 cm2) will move about 1 mol per minute, 22.4 slpm. To reduce the current requirement, though not the membrane area requirement, one typically stacks the membranes. A 100 membrane stack would take 16.1 Amps to pump 22.4 slpm — a very manageable current.

The amount of energy needed per mol is related to the pressure difference via the difference in Gibbs energy, ∆G, at the relevant temperature.

Energy needed per mol is, ideally = ∆G = RT ln Pu/Pd.

where R is the gas constant, 8.34 Joules per mol, T is the absolute temperature, Kelvins (298 for a room temperature process), ln is the natural log, and Pu/Pd is the ratio of the upstream and downstream pressure. We find that, to compress 2 grams of hydrogen (one mol or 22.4 liters) to 100 atm (1500 psi) from 1 atm you need only 11400 Watt seconds of energy (8.34 x 298 x 4.61= 11,400). This is .00317 kW-hrs. This energy costs only 0.03¢ at current electric prices, by far the cheapest power requirement to pump this much hydrogen that I know of. The pump is surprisingly compact and simple, and you get purification of the hydrogen too. What could possibly go wrong? How could the H2 pump company fail?

One thing that I noticed went wrong when I tried building one of these was leakage at the seals. I found it uncommonly hard to make seals that held even 20 psi. I was using 4″ x 4″ membranes so 20 psi was the equivalent of 320 pounds of force. If I were to get 200 psi, there would have been 3200 lbs of force. I could never get the seals to stay put at anything more than 20 psi.

Another problem was the membranes themselves. The membranes I bought were not very strong. I used a wire-mesh backing, and a layer of steel behind that. I figured I could reach maybe 200 psi with this design, but didn’t get there. These low pressures limit the range of pump applications. For many applications,  you’d want 150-200 psi. Still, it’s an awfully cool pump,

Robert E. Buxbaum, February 17, 2017. My company, REB Research, makes hydrogen generators and purifiers. I’ve previously pointed out that hydrogen fuel cell cars have some dramatic advantages over pure battery cars.

New REB hydrogen generator for car fueling, etc.

One of my favorite invention ideas, one that I’ve tried to get the DoE to fund, is a membrane hydrogen generator where the waste gas is burnt to heat the reactor. The result should be exceptional efficiency, low-cost, low pollution, and less infrastructure needs. Having failed to interest the government, I’ve gone and built one on my own dime. That’s me on the left, with Shua Spirka, holding the new core module (reactor, boiler, purifier and purifier) sized for personal car fueling.

Me and Shua and our new hydrogen generator core

Me and Shua and our new hydrogen generator core

The core just arrived from the shop last week, now we have to pumps and heat exchangers. As with our current products, the hydrogen is generated from methanol water, and extracted 99.99999% pure by diffusion through a metal membrane. This core fit in a heat transfer pot (see lower right) and the pot sits on a burner for the waste gas. Control is tricky, but I think I’ve got it. If it all works like it’s supposed to, the combination should be 80-90% energy-efficient, delivering about 75 slpm, 9 kg per day. That’s the same output as our largest current electrically heated generators, with a much lower infrastructure cost. The output should be enough to fuel one hydrogen-powered automobile per day, or keep a small fleet of plug-in, hydrogen-hybrids running continuously.

Hydrogen automobiles have a lot of advantages over Tesla-type electric automobiles. I’ll tell you how the thing works as soon as we set it up and test it. Right now, we’ve got other customers and other products to make.

Robert Buxbaum, February 18, 2016. If someone could supply a good hydrogen compressor, and a good fuel cell, that would be most welcome. Someone who can supply that will be able to ride in a really excellent cart of the future at this year’s July 4th parade.

The Hindenburg: mainly the skin burnt

The 1937 Hindenburg disaster is often mentioned as proof that hydrogen is too flammable and dangerous for commercial use. Well hydrogen is flammable, and while the Hindenburg was full of hydrogen when it started burning, but a look at a color photograph of the fire ( below), or at the B+W  Newsreel film of the fire, suggests that it is not the hydrogen burning, but the skin of the zeppelin and the fuel. Note the red color of the majority flame, and note the black smoke. Hydrogen fires are typically invisible or very light blue, and hydrogen fires produce no smoke.

Closeup of the Hindenburg burning. It is the skin that burns, not the gaseous hydrogen

Closeup of the Hindenburg burning. It is the skin and gasoline that burns, not the gaseous hydrogen.

The Hindenburg was not a simple hydrogen balloon either. It was a 15 story tall airship with state-rooms, a dining room and an observation deck. It carried 95 or so passengers and crew. There was plenty of stuff to burn besides hydrogen. Nor could you say that a simple spark had set things off. The Hindenburg crossed the ocean often: every 2 1/2 days. Lightning strikes were common, as were “Saint Elmo’s fire,” and static electricity discharges. And passengers smoked onboard. Holes and leaks in the skin were also common, both on the Hindenburg and on earlier airships. The hydrogen-filled, Graf Zeppelin logged over 1 million flight miles and over 500 trips with no fires. And it’s not like helium-filled zeppelins and blimps are much safer. The photo below shows the fire and crash of a helium-filled Goodyear blimp, “Spirit of Safety”, June, 2011. Hydrogen has such a very high thermal conductivity that it is nearly as hard to light as helium. I recently made this video where I insert a lit cigar into a balloon filled with hydrogen. There is no fire, but the cigar goes out.  In technical terms, hydrogen is said to have a low upper combustion limit.

Helium-filled goodyear blimp catches fire and burns to destruction.

Helium-filled goodyear blimp “spirit of safety” catches fire and burns before crashing. It’s not the helium burning.

The particular problem with the Hindenburg seems to have been its paint, skin and fuel, the same problems as caused the fire aboard the “Spirit of Safety.” The skin of the Hindenburg was cotton, coated with a resin-dope paint that contained particles of aluminum and iron-oxide to help conduct static electricity. This combination is very flammable, essentially rocket fuel, and the German paint company went on to make rocket fuel of a similar composition for the V2 rockets. And the fuel was flammable too: gasoline. The pictures of the Hindenburg disaster suggest (to me) that it is the paint and the underlying cotton skin that burned, or perhaps the fuel. A similar cause seems to have beset the “Spirit of Safety.” For the Hindenburg’s replacement, The Graf II, the paint composition was changed to replace the aluminum powder with graphite – bronze, a far less flammable mixture, and more electrically conductive. Sorry to say, there was no reasonably alternative to gasoline. To this day, much of sport ballooning is done with hydrogen; statistically it appears no more dangerous than hot air ballooning.

It is possible that the start of the fire was a splash of gasoline when the Hindenburg made a bumpy contact with the ground. Another possibility is sabotage, the cause in a popular movie (see here), or perhaps an electric spark. According to Aviation Week, gasoline spoiled on a hot surface was the cause of the “Spirit of Safety fire,” and the Hindenburg disaster looks suspiciously similar. If that’s the case, of course, the lesson of the Hindenburg disaster is reversed. For safety, use hydrogen, and avoid gasoline.

Dr. Robert E. Buxbaum, January 8, 2016. My company, REB Research, makes hydrogen generators, and other hydrogen equipment. If you need hydrogen for weather balloons, or sport ballooning, or for fuel cells, give us a call.

Advanced windmills + 20 years = field of junk

Everything wears out. This can be a comforting or a depressing thought, but it’s a truth. No old mistake, however egregious, lasts forever, and no bold advance avoids decay. At best, last year’s advance will pay for itself with interest, will wear out gracefully, and will be recalled fondly by aficionados after it’s replaced by something better. Water wheels, and early steamships are examples of this type of bold advance. Unfortunately, it is often the case that last years innovation turns out to be no advance at all: a technological dead end that never pays for itself, and becomes a dangerous, rotting eyesore or worse, a laughing-stock blot or a blot on the ecology. Our first two generations of advanced windmill farms seem to match this description; perhaps the next generation will be better, but here are some thoughts on lessons learned from the existing fields of rotting windmills.

The ancient design windmills of Don Quixote’s Spain (1300?) were boons. Farmers used them to grind grain or cut wood, and to to pump drinking water. Holland used similar early windmills to drain their land. So several American presidents came to believe advanced design windmills would be similar boons if used for continuous electric power generation. It didn’t work, and many of the problems could have been seen at the start. While the farmer didn’t care when his water was pumped, or when his wood is cut. When you’re generating electricity, there is a need to match the power demand exactly. Whenever the customer turns on the switch, electricity is expected to flow at the appropriate amount of Wattage; at other times any power generated is a waste or a nuisance. But electric generator-windmills do not produce power on demand, they produce power when the wind blows. The mismatch of wind and electric demand has bedeviled windmill reliability and economic return. It will likely continue to do so until we find a good way to store electric power cheaply. Until then windmills will not be able to produce electricity at competitive prices to compete with cheap coal and nuclear power.

There is also the problem of repair. The old windmills of Holland still turn a century later because they were relatively robust, and relatively easy to maintain. The modern windmills of the US stand much taller and move much faster. They are often hit, and damaged by lightning strikes, and their fast-turning gears tend to wear out fast, Once damaged, modern windmills are not readily fix, They are made of advanced fiberglass materials spun on special molds. Worse yet, they are constructed in mountainous, remote locations. Such blades can not be replaces by amateurs, and even the gears are not readily accessed to repair. More than half of the great power-windmills built in the last 35 years have worn out and are unlikely to ever get repair. Driving past, you see fields of them sitting idle; the ones still turning look like they will wear out soon. The companies that made and installed these behemoth are mostly out of the business, so there is no-one there to take them down even if there were an economic incentive to do so. Even where a company is found to fix the old windmills, no one would as there is not sufficient economic return — the electricity is worth less than the repair.

Komoa Wind Farm in Kona, Hawaii June 2010; Friends of Grand Ronde Valley.

Komoa Wind Farm in Kona, Hawaii, June 2010; A field of modern design wind-turbines already ruined by wear, wind, and lightning. — Friends of Grand Ronde Valley.

A single rusting windmill would be bad enough, but modern wind turbines were put up as wind farms with nominal power production targeted to match the output of small coal-fired generators. These wind farms require a lot of area,  covering many square miles along some of the most beautiful mountain ranges and ridges — places chosen because the wind was strong

Putting up these massive farms of windmills lead to a situation where the government had pay for construction of the project, and often where the government provided the land. This, generous spending gives the taxpayer the risk, and often a political gain — generally to a contributor. But there is very little political gain in paying for the repair or removal of the windmills. And since the electricity value is less than the repair cost, the owners (friends of the politician) generally leave the broken hulks to sit and rot. Politicians don’t like to pay to fix their past mistakes as it undermines their next boondoggle, suggesting it will someday rust apart without ever paying for itself.

So what can be done. I wish I could suggest less arrogance and political corruption, but I see no way to achieve that, as the poet wrote about Ozymandias (Ramses II) and his disastrous building projects, the leader inevitably believes: “I am Ozymandias, king of kings; look on my works ye mighty and despair.” So I’ll propose some other, less ambitious ideas. For one, smaller demonstration projects closer to the customer. First see if a single windmill pays for itself, and only then build a second. Also, electricity storage is absolutely key. I think it is worthwhile to store excess wind power as hydrogen (hydrogen storage is far cheaper than batteries), and the thermodynamics are not bad

Robert E. Buxbaum, January 3, 2016. These comments are not entirely altruistic. I own a company that makes hydrogen generators and hydrogen purifiers. If the government were to take my suggestions I would benefit.

Highest temperature superconductor so far: H2S

The new champion of high-temperature superconductivity is a fairly common gas, hydrogen sulphide, H2S. By compressing it to 150 GPa, 1.5 million atm., a team lead by Alexander Drozdov and M. Eremets of the Max Planck Institute coaxed superconductivity from H2S at temperatures as high as 203.5°K (-70°C). This is, by far, the warmest temperature of any superconductor discovered to-date, and it’s main significance is to open the door for finding superconductivity in other, related hydrogen compounds — ideally at warmer temperatures and/or less-difficult pressures. Among the interesting compounds that will certainly get more attention: PH3, BH3, Methyl mercaptan, and even water, either alone or in combination with H2S.

Relationship between H2S pressure and critical temperature for superconductivity.

Relation between pressure and critical temperature for superconductivity, Tc, in H2S (filled squares) and D2S (open red). The magenta point was measured by magnetic susceptibility (Nature)

H2S superconductivity appears to follow the standard, Bardeen–Cooper–Schrieffer theory (B-C-S). According to this theory superconductivity derives from the formation of pairs of opposite-spinning electrons (Cooper pairs) particularly in light, stiff, semiconductor materials. The light, positively charged lattice quickly moves inward to follow the motion of the electrons, see figure below. This synchronicity of motion is posited to create an effective bond between the electrons, enough to counter the natural repulsion, and allows the the pairs to condense to a low-energy quantum state where they behave as if they were very large and very spread out. In this large, spread out state, they slide through the lattice without interacting with the atoms or the few local vibrations and unpaired electrons found at low temperatures. From this theory, we would expect to find the highest temperature superconductivity in the lightest lattice, materials like ice, boron hydride, magnesium hydride, or H2S, and we expect to find higher temperature behavior in the hydrogen version, H2O, or H2S than in the heavier, deuterium analogs, D2O or D2S. Experiments with H2S and D2S (shown at right) confirm this expectation suggesting that H2S superconductivity is of the B-C-S type. Sorry to say, water has not shown any comparable superconductivity in experiments to date.

We have found high temperature superconductivity in few of materials that we would expect from B-C-S theory, and yet-higher temperature is seen in many unexpected materials. While hydride materials generally do become superconducting, they mostly do so only at low temperatures. The highest temperature semiconductor B-C-S semiconductor discovered until now was magnesium boride, Tc = 27 K. More bothersome, the most-used superconductor, Nb-Sn, and the world record holder until now, copper-oxide ceramics, Tc = 133 K at ambient pressure; 164 K at 35 GPa (350,000 atm) were not B-C-S. There is no version of B-C-S theory to explain why these materials behave as well as they do, or why pressure effects Tc in them. Pressure effects Tc in B-C-S materials by raising the energy of small-scale vibrations that would be necessary to break the pairs. Why should pressure effect copper ceramics? No one knows.

The standard theory of superconductivity relies on Cooper pairs of electrons held together by lattice elasticity.  The lighter and stiffer the lattice, the higher temperature the superconductivity.

The standard theory of superconductivity relies on Cooper pairs of electrons held together by lattice elasticity. The lighter and stiffer the lattice, the higher temperature the superconductivity.

The assumption is that high-pressure H2S acts as a sort of metallic hydrogen. From B-C-S theory, metallic hydrogen was predicted to be a room-temperature superconductor because the material would likely to be a semi-metal, and thus a semiconductor at all temperatures. Hydrogen’s low atomic weight would mean that there would be no significant localized vibrations even at room temperature, suggesting room temperature superconductivity. Sorry to say, we have yet to reach the astronomical pressures necessary to make metallic hydrogen, so we don’t know if this prediction is true. But now it seems H2S behaves nearly the same without requiring the extremely high pressures. It is thought that high temperature H2S superconductivity occurs because H2S somewhat decomposes to H3S and S, and that the H3S provides a metallic-hydrogen-like operative lattice. The sulfur, it’s thought, just goes along for the ride. If this is the explanation, we might hope to find the same behaviors in water or phosphine, PH3, perhaps when mixed with H2S.

One last issue, I guess, is what is this high temperature superconductivity good for. As far as H2S superconductivity goes, the simple answer is that it’s probably good for nothing. The pressures are too high. In general though, high temperature superconductors like NbSn are important. They have been valuable for making high strength magnets, and for prosaic applications like long distance power transmission. The big magnets are used for submarine hunting, nuclear fusion, and (potentially) for levitation trains. See my essay on Fusion here, it’s what I did my PhD on — in chemical engineering, and levitation trains, potentially, will revolutionize transport.

Robert Buxbaum, December 24, 2015. My company, REB Research, does a lot with hydrogen. Not that we make superconductors, but we make hydrogen generators and purifiers, and I try to keep up with the relevant hydrogen research.

Chemical engineers and boilers, ‘I do anything’

One of the problems I run into trying to hire chemical engineers is that their background is so varied that they imagine they can do anything. Combine this with a willingness to try to do anything, and the job interview can go like this.

Me: You have a great resume. I suppose you know that our company is a leader in hydrogen engineering (in my case). Tell me, what do you see yourself doing at our company?

Engineer: I don’t know. I do anything and everything.

Me: That covers a lot of ground. Is there something that you do particularly well, or that you would particularly like to do here?

Engineer.: Anything, really.

Me: Do you see yourself making coffee?

Engineer: I could do that, but was thinking of something with more … responsibility.

Me: OK. Could you design and build a 5 kW, gas-fired boiler?

Engineer: Himm. How much coffee did you say you guys drink?

Current version of our H2 generators (simplified) and the combustion-heated modification I'm working on.

Current version of our H2 generators (simplified) and the combustion-heated modification I’m working on.

Not quite where I was going with that. The relevance of this joke is that I’m finally getting around to redesigning our hydrogen generators so that they are heated by waste-gas combustion instead of electricity. That was the plan originally, and it appears in almost all of my patents. But electricity is so easy to deal with and control that all REB generators have been heated this way, even the largest.

The current and revised processes are shown in the figure at right. Our general process is to make ultra pure hydrogen from methanol and water in one step by the following reaction:

CH3OH + H2O –> CO2  + 3 H2.

done in a membrane reactor (see advantages). My current thought is to make the first combustion heated hydrogen generator have an output about 2/3 as large as our largest. That is, to produce 100 scfh, or 50 slpm, or 6 kg of H2/ day. This could be advantageous for people trying to fuel fork lifts or a hybrid, fuel cell car; a car could easily carry 12 kg of hydrogen, allowing it to go an extra 300 miles.

The generator with this output will need a methanol-water feed rate of about 2/3 gal per hour (about 80¢/worth pre hour), and will need a heat rate of 2.5 to 3 kW. A key design issue is that I have to be sure not to extract too much energy value from the feed because, if there’s not enough energy in the waste gas, the fire could go out. That is, nearly pure CO2 doesn’t burn. Alternately, if there is too much flow to the flame or too much energy content, there might be over-heating. In order to avoid the flame going out, I have a pilot flame that turns off the flow if it goes out. I also plan to provide 30% or so of the reactor heat about 800 W, by burning non-wast gas, natural gas in this iteration. My plan is to use this flow to provide most of the temperature control, but to provide secondary control by (and safety) by venting some of the off-gas if the reactor gets hotter than a set limit. Early experiments suggest it should work.

The business side of this is still unknown. Perhaps this would provide military power or cabins in the woods. Perhaps ship-board auxiliary power or balloons, or hydrogen fueling stations, or perhaps it will be used for chemical applicationsWith luck, it’ll sell to someone who needs hydrogen.

Robert E. Buxbaum. December 4, 2015. By the way, hydrogen isn’t as flammable as you might think.

Air swimmer at REB Research

Birds got to swim and fish got to fly. Gonna love that hydrogen till the day I die. Here’s a movie of our hydrogen-filled air swimmer, a fish-blimp at REB Research. My hope is that this thing will help us sell hydrogen generators — perhaps to folks who fly military balloons, or those who fly hydrogen balloons for sport. On the other hand, the swimmer is a lot of fun to play with — and I got to show it off to a first grade class!

Aside from balloon fliers, military and otherwise, the sort of customers I’d hoped to attract were those building fueling stations for fuel cell cars or drone airplanes, and those running multiple gas chromatographs or adding hydrogen to car or diesel engine. Even small amounts of hydrogen added to a standard engine will reduce pollution significantly, add raise mileage too: a plus for a company like VW.

Dr. Robert E. Buxbaum, December 2, 2015. I should mention that hydrogen balloons are no where near as unsafe as people think. Here’s a movie I made of lighting a hydrogen filled balloon with a cigar.