Category Archives: Engineering

Einstein’s theory of diffusion in liquids, and my extension.

In 1905 and 1908, Einstein developed two formulations for the diffusion of a small particle in a liquid. As a side-benefit of the first derivation, he demonstrated the visible existence of molecules, a remarkable piece of work. In the second formulation, he derived the same result using non-equilibrium thermodynamics, something he seems to have developed on the spot. I’ll give a brief version of the second derivation, and will then I’ll show off my own extension. It’s one of my proudest intellectual achievements.

But first a little background to the problem. In 1827, a plant biologist, Robert Brown examined pollen under a microscope and noticed that it moved in a jerky manner. He gave this “Brownian motion” the obvious explanation: that the pollen was alive and swimming. Later, it was observed that the pollen moved faster in acetone. The obvious explanation: pollen doesn’t like acetone, and thus swims faster. But the pollen never stopped, and it was noticed that cigar smoke also swam. Was cigar smoke alive too?

Einstein’s first version of an answer, 1905, was to consider that the liquid was composed of atoms whose energy was a Boltzmann distribution with an average of E= kT in every direction where k is the Boltzmann constant, and k = R/N. That is Boltsman’s constant equals the gas constant, R, divided by Avogadro’s number, N. He was able to show that the many interactions with the molecules should cause the pollen to take a random, jerky walk as seen, and that the velocity should be faster the less viscous the solvent, or the smaller the length-scale of observation. Einstein applied the Stokes drag equation to the solute, the drag force per particle was f = -6πrvη where r is the radius of the solute particle, v is the velocity, and η is the solution viscosity. Using some math, he was able to show that the diffusivity of the solute should be D = kT/6πrη. This is called the Stokes-Einstein equation.

In 1908 a French physicist, Jean Baptiste Perrin confirmed Einstein’s predictions, winning the Nobel prize for his work. I will now show the 1908 Einstein derivation and will hope to get to my extension by the end of this post.

Consider the molar Gibbs free energy of a solvent, water say. The molar concentration of water is x and that of a very dilute solute is y. y<<1. For this nearly pure water, you can show that µ = µ° +RT ln x= µ° +RT ln (1-y) = µ° -RTy.

Now, take a derivative with respect to some linear direction, z. Normally this is considered illegal, since thermodynamic is normally understood to apply to equilibrium systems only. Still Einstein took the derivative, and claimed it was legitimate at nearly equilibrium, pseudo-equilibrium. You can calculate the force on the solvent, the force on the water generated by a concentration gradient, Fw = dµ/dz = -RT dy/dz.

Now the force on each atom of water equals -RT/N dy/dz = -kT dy/dz.

Now, let’s call f the force on each atom of solute. For dilute solutions, this force is far higher than the above, f = -kT/y dy/dz. That is, for a given concentration gradient, dy/dz, the force on each solute atom is higher than on each solvent atom in inverse proportion to the molar concentration.

For small spheres, and low velocities, the flow is laminar and the drag force, f = 6πrvη.

Now calculate the speed of each solute atom. It is proportional to the force on the atom by the same relationship as appeared above: f = 6πrvη or v = f/6πrη. Inserting our equation for f= -kT/y dy/dz, we find that the velocity of the average solute molecule,

v = -kT/6πrηy dy/dz.

Let’s say that the molar concentration of solvent is C, so that, for water, C will equal about 1/18 mols/cc. The atomic concentration of dilute solvent will then equal Cy. We find that the molar flux of material, the diffusive flux equals Cyv, or that

Molar flux (mols/cm2/s) = Cy (-kT/6πrηy dy/dz) = -kTC/6πrη dy/dz -kT/6πrη dCy/dz.

where Cy is the molar concentration of solvent per volume.

Classical engineering comes to a similar equation with a property called diffusivity. Sp that

Molar flux of y (mols y/cm2/s) = -D dCy/dz, and D is an experimentally determined constant. We thus now have a prediction for D:

D = kT/6πrη.

This again is the Stokes Einstein Equation, the same as above but derived with far less math. I was fascinated, but felt sure there was something wrong here. Macroscopic viscosity was not the same as microscopic. I just could not think of a great case where there was much difference until I realized that, in polymer solutions there was a big difference.

Polymer solutions, I reasoned had large viscosities, but a diffusing solute probably didn’t feel the liquid as anywhere near as viscous. The viscometer measured at a larger distance, more similar to that of the polymer coil entanglement length, while a small solute might dart between the polymer chains like a rabbit among trees. I applied an equation for heat transfer in a dispersion that JK Maxwell had derived,

where κeff is the modified effective thermal conductivity (or diffusivity in my case), κl and κp are the thermal conductivity of the liquid and the particles respectively, and φ is the volume fraction of particles. 

To convert this to diffusion, I replaced κl by Dl, and κp by Dp where

Dl = kT/6πrηl

and Dp = kT/6πrη.

In the above ηl is the viscosity of the pure, liquid solvent.

The chair of the department, Don Anderson didn’t believe my equation, but agreed to help test it. A student named Kit Yam ran experiments on a variety of polymer solutions, and it turned out that the equation worked really well down to high polymer concentrations, and high viscosity.

As a simple, first approximation to the above, you can take Dp = 0, since it’s much smaller than Dl and you can take Dl to equal Dl = kT/6πrηl as above. The new, first order approximation is:

D = kT/6πrηl (1 – 3φ/2).

We published in Science. That is I published along with the two colleagues who tested the idea and proved the theory right, or at least useful. The reference is Yam, K., Anderson, D., Buxbaum, R. E., Science 240 (1988) p. 330 ff. “Diffusion of Small Solutes in Polymer-Containing Solutions”. This result is one of my proudest achievements.

R.E. Buxbaum, March 20, 2024

BYD is not first world competition for Tesla

In Q4 2023, BYD became the world’s largest electric vehicle (EV) manufacturer, passing Tesla in world wide sales. They mostly sell in China, and claim to make a profit while selling cars for about half the price of a Tesla. They also make robots, trucks, busses, smart phones, and batteries — including blade batteries that Tesla uses for a variant in its Berlin facility. They are a darling of the wall-street experts, in part because Warren Buffett is an investor. BYD cars look to be about as nice as Tesla’s at least from the outside and sell (In China) for a fraction of the price. The experts are convinced enough to write glowing articles, but I suspect that the experts have not invested, nor bought BYD products. — What do I know?

BYD truck. It looks good on the outside. Is it competition?

Part of the BYD charm is that it is considered socially progressive, while Tesla is seen as run by a dictatorial villain. A Delaware judge who concluded that Musk did non deserve the majority of his salary, and confiscated it. There are no such claims against BYD. BYD also has far more models than Tesla, 41 by my count, compared to Tesla’s 4. The experts seem to believe that all BYD has to do is bring their low-cost cars west, and they will own the market. My sense is that, if that was all they needed, they’d have done it already. I strongly suspect the low cost cars that are the majority of BYD’s sales are low quality versions — too low to sell in the US. Here are some numbers.

Total number of vehicles made 2023:
Tesla: ~1,800,000
BYD: ~3,020,000 (1,570,000 BEV)

Employees 2023: Vehicles / Employee 2023:
Tesla: ~140,000 Tesla: 12.86
BYD: ~631,500 BYD: 5.03

Gross Revenue 2023: Gross revenue per vehicle:
Tesla: ~$96.8B Tesla: $53,900
BYD: ~ $85B BYD: $28,100

Net Profit 2023: Profit per employee: Profit per vehicle:
Tesla: ~$9.5B (9.7%). Tesla: $67,857. Tesla: $5,280.
BYD: ~$3.5B (4.1%). BYD: $5,542. BYD: $1,160

Market share based on sales in western countries 2023:
Tesla: US: 4%, EU: 2.6%
BYD: US: 0%, EU: 0.1%

The most telling comparison, in my opinion, is BYD’s tiny market share in western countries. Their cars sell for 1/2 what Tesla’s sell for. If their low-cost cars were as good as Tesla’s, there is no way their market penetration would be so low. My sense is that the average BYD vehicle is lacking in something. Maybe they’re underpowered, or poorly constructed, unsafe, or unreliable: suitable only for China, India, or other poor markets. I suspect that the cars BYD sells in Europe are made on a separate line. Even so, customers say that BYD cars feel “cheap.” BYD charges more for these cars in Europe than Tesla charges for its top sellers, suggesting that these vehicles are of a different, better design. Even so, the low numbers suggest that BYD does not turn a profit on the sales. I suspect they do it for PR.

Both cars look sporty. Why doesn’t the BYD sell?

Another observation is that BYD produces 5.03 vehicles per worker, per year. That’s half as many as Tesla workers produce per worker-year. It’s also about half of Ford’s Rouge plant (Detroit) worker production in the 1930s. That Ford plant was vertically integrated starting with raw materials and outputting finished cars. This low output per worker suggests that BYD is built on low wage, low skill production, or equally damning, that none of these models are really mass-produced.

A first world market favors a polished product that your mechanic is somewhat familiar with. That favors Tesla as it has significant market penetration, and a network of mechanics. Also, Tesla has built up a network of fast charge stations and reliable service providers. BYD has no particular charging infrastructure and virtually no service network. Charging price and experience is a key decider among first world customers. No American will tolerate slow charging in the snow at a high price — especially if they must travel to a charger without being sure the charger will be working when they get there. Tesla has figured out how to make charging less painful, and that’s worth a lot.

Tesla might fail, but if so I don’t think it will be because of BYD success. Months ago the experts assured us that cybertruck would be deadly a failure. I disagree, but it might be. I don’t think BYDs will be better. Government subsidies have ended in many states and countries (Germany, California…) putting a dent in Tesla sales, and they are having manufacturing difficulties, particularly with batteries. These seem fix-able, but might not be. I see relatively little first world competition in the US EV market from legacy auto companies. Maybe they know to avoid EVs. They currently make decent products, IC and EV, but lose money on every EV. They treat EVs as a passing fad. If they are right, Tesla and BYD will fail. If they are wrong, Tesla will do fine, and they may not be able to make up their lost place in the market. As for BYD, given their low production numbers, they will need some 3 million new workers and many new factories. I don’t think they can find them, nor raise the money for the factories.

Most of the data here was taken from @NicklasNilsso14. All of the opinions are mine.

Robert Buxbaum February 18, 2024.

Deadly screw sizes, avoid odd numbers and UNF.

The glory of American screws and bolts is their low cost ubiquity, especially in our coarse thread (UNC = United National Coarse) sizes. Between 1/4 inch and 5/8″, they are sized in 1/16″ steps, and after that in 1/8″ steps. Below 3/16″, they are sized by wire gauges, and generally they have unique pitch sizes. All US screws and bolts are measured by their diameter and threads per inch. Thus, the 3/8-16 (UNC) has an outer diameter (major diameter) of 3/8″ with 16 threads per inch (tpi). 16 tpi is an ideal thread number for overall hold strength. No other bolt has 16 threads per inch so it is impossible to use the wrong bolt in a hole tapped for 3/8-16. The same is true for basically every course thread with a very few exceptions, mainly found between 3/16″ and 1/4″ where the wire gauges transition to fractional sizes. Because of this, if you stick to UTC you are unlikely to screw up, as it were. You are also less-likely to cross-thread.

I own one of these. It’s a tread pitch gauge.

US fine threads come in a variety of standards, most notably UNF = United National Fine. No version of fine thread is as strong as coarse because while there are more threads per inch, each root is considerably weaker. The advantage of fine treads is for use with very thin material, or where vibration is a serious concern. The problem is that screwups are far more likely and this diminishes the strength even further. Consider the 7/16″ – 24 (UNF). This bolt will fit into a nut or flange tapped for 1/2″- 24. The fit will be a little loose, but you might not notice. You will be able to wrench it down so everything looks solid, but only the ends of the threads are holding. This is a accident waiting to happen. To prevent such mistakes you can try to never allow a 7/6″-24 bolt into your shop, but this is uncomfortably difficult. If you ever let a 7/6″-24 bolt in, some day someone will grab it and use it, in all likelihood with a 1/2″ -24 nut or flange, since these are super-common. Under stress, the connection will fail in the worst possible moment.

Other UNF bolts and nuts present the same screwup risk. For example, between the 3/8″-24 and 5/16″-24 (UNF), or the #10-32 (UNF) and also with the 3/16″- 32, and the latter with the #8-32 (UNC). There is also a French metric with 0.9mm — this turns out to be identical to -32 pitch. The problem appears with any bolt pair where with identical pitch and the major diameter of the smaller bolt has a larger outer diameter (major diameter) than the inner diameter (minor diameter) of the larger bolt. If these are matched, the bolts will seem to hold when tightened, but they will fail in use. You well sometimes have to use these sizes because they match with some purchased flange. If you have to use them, be careful to use the largest bolt diameter that will fit into the threaded hole.

Where I have the option, my preference is to stick to UNC as much as possible, even where vibration is an issue. In vibration situations, I prefer to add a lock nut or sometimes, an anti-vibration glue, locktite, available in different release temperatures. Locktite is also helpful to prevent gas leaks. In our hydrogen purifiers, I use lock washers on the ground connection from the power cord, for example.

I try to avoid metric, by the way. They less readily available in the US, and more expensive. The other problem with metric is that there are two varieties (Standard and French — God love the French engineering) and there are so many sizes and pitches that screwups are common. Metric bolts come in every mm diameter, and often fractional mm too. There is a 2mm, a 2.3mm, a 2.5mm, and a 2.6mm, often with overlapping pitches. The pitch of metric screws and bolts is measured by their spacing, by the way, so a 1mm metric pitch means there is 1mm between threads, the the equivalent of a 24.5 pitch in the US, and a 0.9mm pitch = US-32. Thread confusion possibilities are endless. A M6x1 (6mm OD x 1mm pitch) is easily confused with a M5x1 or a M7x1, and the latter with the M7.5×1. A M8x1.25 is easily confused with a M9x1.25, and a M14x2 with an M16x2. And then there is confusion with US bolts: a 2.5mm metric pitch is nearly identical to a US 10tpi pitch. I can not rid myself of US threads, so I avoid metric where I can. As above, problems arise if you use a smaller diameter bolt in a larger diameter nut.

For those who have to use metric, I suggest you always use the largest bolt that will fit (assuming you can find it). I try to avoid bringing odd-size bolts into their shop, that is, stick to M6, M8, M10. It’s not always possible, but it’s a suggestion. I get equipment with odd-size metric bolts too. My preference is to stick to UNC and to avoid odd numbers.

Robert Buxbaum, January 23, 2024. Note: I’ve only really discussed bolt sizes between about #4 and 1″, and I didn’t consider UNRC or UNJF or other, odd options. You can figure these issues out yourself from the above, I think.

Ferries make more sense than fast new trains.

Per pound mile of material, the transport cost by ship is 1/4 as much as by train, and about 1/8 as much as by truck. Ships are slower, it is true, but they can go where trucks and trains can not. They cross rivers and lakes at ease and can haul weighty freight with ease. I think America could use many more ferries, particularly drive-on, fast ferries. I don’t think we need new fast rail lines, because air travel will always be faster and cheaper. The Biden administration thinks otherwise, and spends accordingly.

Amtrak gets $30 Billion for train infrastructure this year, basically nothing for ferries.

The Biden administration’s infrastructure bill, $1.2 Trillion dollars total, provides $30 Billion this year for new train lines, but includes less than 1% as much for ferries, $220 million, plus $1B for air travel. I think it’s a scandal. The new, fast train lines are shown on the map, above. Among them is a speed upgrade to the “Empire Builder” train running between Chicago and Seattle by way of Milwaukee. I don’t think this will pay off — the few people who take this train, takes it for the scenery, I think, and for the experience, not to get somewhere fast.

There is money for a new line between Cleveland and Detroit, and for completion of the long-delayed, and cost-over-run prone line between LA and San Francisco. Assuming these are built, I expect even lower ridership since the scenery isn’t that great. Even assuming no delays (and there are always delays), 110 mph is vastly slower than flying, and typically more expensive and inconvenient. Driving is yet slower, but when you drive, you arrive with your car. With a train or plane, you need car rental, typically.

New Acela train, 150 mph max. 1/4 as fast as flying at the same price.

Drive-on ferries provide a unique advantage in that you get there with your car, often much faster than you would with by driving or by train. Consider Muskegon to Milwaukee (across the lake), or Muskegon to Chicago to Milwaukee, (along the lake). Cleveland to Canada, or Detroit to Cleveland. No land would have to be purchased and no new track would have to be laid and maintained. You’d arrive, rested and fed (they typically sell food on a ferry), with your car.

There’s a wonderful song, “City of New Orleans”, sung here by Arlo Guthrie describing a ride on the historic train of that name on a trip from Chicago to New Orleans, 934 miles in about one day. Including stops but not including delays, the average speed is 48 mph, and there are always delays. On board are, according to the song, “15 restless riders, 3 conductors, and 25 sacks of mail.” The ticket price currently is $200, one way, or about as much as a plane ticket. The line loses money. I’ve argued, here, for more mail use to hep make this profitable, but the trip isn’t that attractive as a way to get somewhere, it’s more of a land-cruise. The line is scheduled for an upgrade this year, but even if upgraded to 100 mph (14 hours to New Orleans including stops?) it’s still going to be far slower than air travel, and likely more expensive, and you still have to park your car before you get on, and then rent another when you get off. And will riders like it more? I doubt it, and doubt the speed upgrade will be to 100 mph.

Lake Express, 30 mph across Lake Michigan

Ferry travel tends to cost less than train or plane travel because water traffic is high volume per trip with few conductors per passenger. At present, there are only two ferryboats traveling across Lake Michigan, between Michigan and Wisconsin, Milwaulkee to Muskegon. They are privately owned, and presumably make money. The faster is the Lake Express, 30 mph. It crosses the lake in 2.5 hours. Passenger tickets cost $52 one way, or $118 for passenger and car. That’s less than the price of an Amtrak ticket or a flight. I think a third boat would make sense and that more lines would be welcome too. Perhaps Grand Haven to Racine or Chicago.

Route of the Lake Express. I’d like to see more like this; St. Joseph to Milwaukee say, and along Lake Erie.

Currently, there are no ferries across Lake Erie. Nor are there any along Lake Erie, or even across Lake St. Clair, or along the Detroit River, Detroit to Toledo or Toledo to Cleveland. These lines would need dock facilities, but they would have ridership, I think. New York’s Staten Island ferry has good ridership, 35,000 riders on a typical day, plus cars and trucks. In charge are roughly 120 engineers, captains and mates, one employee for every 300 passengers or so. By comparison, Amtrak runs 300 trains that carry a total of 87,000 passengers on an average day, mostly on the east coast. These 300 trains are run by 17,100 employees as of fiscal year 2021, one employee for every 4 passengers. Even at the slow speeds of our trains the cost is far higher per passenger and per passenger mile.

The Staten Island ferry is slow, 18.5 mph, but folks don’t seem to mind. The trip takes 20 minutes, about half as long as most people’s trips on Amtrak. There are also private ferry lines in NY, many of these on longer trips. People would take ferries for day-long trips along our rivers, I think. Fast ferries would be nice, 40 mph or more, but I think even slow ferries would have ridership and would make money. A sea cruise is better than a land cruise, especially if you can have a cabin. On the coal-steam powered, Badger, you can rent a state-room to spend the night in comfort. Truckers seem to like that they cover ground during their mandatory rest hours. The advantage is maximized, I think, for ferry trips that take 12 hours or so, 250 to 350 miles. That’s Pittsburgh to Cincinnatti or Chicago to Memphis.

New York’s Staten Island ferry leaves every 15 minutes during rush hour. Three different sizes of boat are used. The largest carry over 5000 passengers and 100 cars and trucks at a crossing.

A low risk way to promote ferry traffic between the US and Canada would be to negotiate bilateral exemption to The Jones Act and its Canadian equivalent. Currently, we allow only US ships with US crews for US travel within the US.* Cabotage it’s called, and it applies to planes as well, with exemptions. Canada has similar laws and exemptions. A sensible agreement would allow in-country and cross-country travel on both Canadian and US ships, with Canadian and/or US crew. In one stoke, ridership would double, and many lines would be profitable.

Politicians of a certain stripe support trains because they look futuristic and allow money to go to friends. Europeans brag of their fast trains, but they all lose money, and Europe had to ban many short hop flights to help their trains compete. Without this, Europeans would fly. There is room to help a friend with a new ferry, but not as much as when you buy land and lay track. We could try to lead in fancy ferries going 40 mph or faster, providing good docks, and some insurance. Investors would take little risk since a ferry route can be moved**. Don’t try that with a train.

In Detroit we have a close up of train mismanagement involving the “People Mover.” It has no ridership to speak of. Our politicians then added “The Q line” to connect to it. People avoid both lines. I think people would use a ferry along the Detroit river, though, St. Claire to Wyandotte, Detroit, Toledo — and to Cleveland or Buffalo. Our lakes and rivers are near-empty superhighways. Let’s use them.

Robert Buxbaum, January 2, 2024. *The US air cabotage act (49 U.S.C. 41703) prohibits the transportation of persons, property, or mail for compensation or hire between points of the U.S. in a foreign civil aircraft. We’ve managed exemptions, though, e.g. for US air traffic with Airbus and Embraer planes. We can do the same with ferries.

** I notice that it was New York’s ferries, and their captains, that rescued the people on Sullenberger’s plane when it went down in the Hudson River — added Jan. 6.

Cybertruck an almost certain success

Leading up to the Cybertruck launch 4 weeks ago, the expert opinion was that it was a failure. Morgan Stanley, here dubbed it as one, as did Rolling Stone here. Without having driven the vehicle, the experts at Motor trend, here, declared it was worse than you thought, “a novelty” car. I’d like to differ. The experts point out that the design is fundamentally different from what we’ve made for years. They claim it’s ugly, undesirable, and hard to build. Ford’s F-150 trucks are the standard, the top selling vehicle in the US, and Cybertruck looks nothing like an F-150. I suspect that, because of the differences, the Cybertruck can hardly fail to be a success in both profit and market share.

Cybertruck pulls a flat-bed trailer at Starbase.

Start with profit. Profit is the main measure of company success. High profit is achieved by selling significant numbers at a significant profit margin. Any decent profit is a success. This vehicle could trail the F-150 sales forever and Musk could be the stupidest human on the planet, so long as Tesla sells at a profit, and does so legally, the company will succeed. Tesla already has some 2 million pre-orders, and so far they show no immediate sign of leaving despite the current price of about $80,000. Unless you think they are all lying or that Musk has horribly mispriced the product, he should make a very decent profit. My guess is he’s priced to make over $10,000 per vehicle, or $20B on 2 million vehicles. Meanwhile, no other eV company seems to be making a profit.

The largest competing electric pickup company is Rivian. They sold 16,000 electric trucks in Q3 2023, but the profit margin is -100%. This is to say, they lose $1 for every $1 worth of sales –and that’s unsustainable. Despite claims to the contrary, a money-losing business is a failure. The other main competitors are losing too. Ford is reported to lose about $50,00 per eV. According to Automotive News, here, last week, Ford decided to cut production of its electric F-150, the Lightning, by 50%. This makes sense, but provides Cybertruck a market fairly clear of US e-competition.

2024 BYD, Chinese pickup truck

Perhaps the most serious competitor is BYD, a Chinese company backed by the communist government, and Warren Buffet. They are entering the US market this month with a new pickup. It might be profitable, but BYD is relatively immune to profitability. The Chinese want dominance of the eV market and are willing to lose money for years until they get it. Fortunately for Tesla, the BYD truck looks like Rivian’s. Tesla’s trucks should exceed them in range, towing, and safety. BYD, it seems, is aiming for a lower price point and a different market, Rivian’s.

A video, here, shows the skin of a Cybertruck is bulletproof to 9mm, shotgun, and 45 caliber machine gun fire. Experts scoff at the significance of bulletproof skin — good for folks working among Mexican drug lords, or politicians, or Israelis. Tesla is aiming currently for a more upscale customer, someone who might buy a Hummer or an F-250. This is more usable and cheaper.

Don’t try this with other trucks.

Another way Cybertruck could fail is through criminal activity. Musk could be caught paying off politicians or cheating on taxes or if the trucks fail their safety tests. So far, Cybertruck seems to meet Federal Motor Vehicle Safety Standards by a good margin. In a video comparison, here, it appears to take front end collisions as well as an F-150, and appears better in side collisions.

This leaves production difficulty. This could prevent the cybertruck from being a big success, and the experts have all harped on this. The vehicle body is a proprietary stainless steel, 0.07″ thick. Admittedly it’s is hard to form, but Tesla seems to manage it. VIN number records indicate that Tesla had delivered 448 cybertrucks as Friday last week, many of them to showrooms, but some to customers. Drone surveys of the Gigafactory lot show that about 19 are made per day. That’s a lot more than you’d see if assembly was by hand. Assuming a typical learning curve, it’s reasonable to expect some 600 will be delivered by December 31, and that production should reach 6000 per month in mid 2024. At that rate, they’ll be making and selling at the same rate as Rivian or Ford, and making real money doing it. The stainless body might even be a plus, deterring copycat competition. Other pluses are the add-ons, like the base-camp tent option, a battery extension, a ramp, and (it’s claimed) some degree of sea worthiness. Add-ons add profit and deter direct copying (for a time).

Basecamp, tent option.

So why do I think the experts are so wrong? My sense is that these people are experts because of long experience at other companies — the competitors. They know what was tried, and that innovation failed. They know that their companies chose not to make anything like a Cybertruck, and not to provide the add-ons. They know that the big boys avoid “novelty cars” and add-ons. There is an affinity among experts for consensus and sure success, the success that comes from Chinese companies, government support and international banking. If the Cybertruck success is an insult to them and their expertise. Nonetheless, if Cybertruck succeeds, they will push their companies towards a more angular design plus add-ons. And they will claim cybertruck is no way novel, but that government support is needed to copy it.

Robert Buxbaum, December 25, 2023.

Solving the evening solar power problem

Solar power is only available during the day, and people need power at night too. As a result, the people of a town will either need a lot of storage, or a back-up electric generator for use at night and on cloudy days. These are expensive, and use gasoline (generally) and they are hard to maintain for an individual. Central generated alternate power is cheaper, but the wires have to be maintained. As a result, solar power is duck curve, or canon curve power. It never frees you from hydrocarbons and power companies, and it usually saves no money or energy.

People need power at twilight and dawn too, and sunlight barely generates any power during these hours, and sometimes clouds appear and disappear suddenly while folks expect uniform power to their lights. The mismatch between supply and demand means that your backup generator, must run on and off suddenly. It’s difficult for small, home generators, but impossible for big central generators. In order to have full power by evening, the big generators need to run through the day. The result is that, for most situations, there is no value to solar power.

Installed solar power has not decreased the amount of generation needed, just changed when it is needed.

Power leveling through storage will address this problem, but it’s hardly done. Elon Musk has suggested that the city should pay people to use a home battery power leveler, a “power wall” or an unused electric car to provide electricity at night, twilight, and on cloudy days. It’s a legitimate idea, but no city has agreed, to date. In Europe, some locations have proposed having a central station that generates hydrogen from solar power during the day using electrolysis. This hydrogen can drive trucks or boats, especially if it is used to make hythane. One can also store massive power by water pumping or air compression.

Scottsbluff Neb. solar farm damaged by hail, 6/23.

In most locations, storage is not available, so solar power has virtually no value. I suspect that, at the very least, in these locations, the price per kWh should be significantly lower at noon on a sunny day (1/2 as expensive or less). The will cause people to charge their eVs at noon, and not at midnight. Adjusted prices will cause folks to do heavy manufacturing at noon and not at midnight. We have the technology for this, but not the political will, so far. Politicians find it easier to demand solar, overcharge people (and industry) and pretend to save the environment.

Robert Buxbaum Aug 8, 2023

Chemistry, chemical engineering joke

A catalyst walks into a bar. The bartender says, “We can’t serve you.”

The catalyst asks, “Why not?”

The bartender says, “The last time you were here, you started something.”

Robert Buxbaum, July 14, 2023 (Bastille day). If you like this, maybe you’d like another, chemistry joke or this physics joke.

I’d like to expand the Jones act so more ships can do US trade.

If you visit most any European port city, you’ll see a lot more shipping than in the Midwestern US. In Detroit, where I am, your’ll see an occasional ore boat from Wisconsin, and an occasional tourist cruise, but nothing to compare to German, Belgian, or Turkish ports. The reason for the difference is “The Jones act.”

The port of Istanbul with many ships

The Jones act , also known as “The Merchant Marine Act of 1920”, requires that all ships depositing cargo or people between US ports must be US owned, US built, US captained, US flagged, and at least 70% US manned. This raises costs and reduces options. The result is that few ships can move people or cargo between US cities, and these ships are older and less efficient than you’ll see elsewhere. World wide water traffic costs about 1/8 that of rail traffic per ton-mile, but in the US, the prices are more comparable. The original justification was to make sure the US would always have a merchant marine. The Jones act does that, sort of, but mostly, it just makes goods more expensive and travel more restrictive.

The port of Detroit — we rarely see more than one ship at a time.

Because it does some good, I don’t want to get rid of the Jones act entirely, but I’d like to see US shipping options expanded. Almost any expansion would do, e.g. allowing 50% US manned ships delivering along US rivers, or expanding to allow Canadian built ships or flagged, and ships that are more than 50% US owned, or expanding to any NAFTA vessel that meets safety standards. Any expansion of the number of ships available and would help.

The jones act increase the price of oil transport by a factor of five, about.

Currently, the only exceptions to the Jones act are for emergencies (Trump voided the act during several storms) and for ships that visit a foreign port along the route. This exception is how every cruise ship between California and Hawaii works. They’re all foreign, but they stop in Mexico along the way. Similarly, cruises between Florida and Puerto Rico will stop in Bermuda typically, because the ships are foreign owned. Generally, passengers are not allowed to get off in Puerto Rico, but must sleep on board. This is another aspect of the Maritime act that I’d like to see go away.

Because of the Jones act, there is some US freight-ship building, and a supply of sailors and captains. A new, US ore-ship for the Great Lakes was launched last year, so far it’s been used to carry salt. There is also a US built and operated cruise ship in Hawaii, the “Pride of America,” that makes no stop in Mexico. I’d like to see these numbers expanded, and the suggestions above seem like they’d do more good than harm, lowering prices, and allowing modern container ships plus roll-on-roll-off car transports. Our rivers and lakes are super highways; I’d like to see them used more.

The port of Antwerp – far busier than Detroit.

Another way to expand the Jones act while perhaps increasing the number of US-built and operated ship would be through a deal with Canada so that ships from either country could ply trade on either countries rivers. As things stand, Canada has its own version of the Jones act, called the Coastal Trade Act where Canadian vessels must be used for domestic transport (cabotage) unless no such vessel is available. Maybe we can strike a deal with Canada so that the crew can be Canadian or US, and where built ships in either country are chosen on routes in either country, providing they meet the safety and environmental requirements of both.

Robert Buxbaum, June 14, 2023.

Rain barrels aren’t much good. Wood chips are better, And I’d avoid rain gardens, even as a neighbor.

A lot of cities push rain barrels as a way to save water and reduce flooding. Our water comes from the Detroit and returns to it as sewage, so I’m not sure there is any water saving, but there is a small cash saving (very small) if you buy 30 to 55 gallon barrels from the city and connect them to the end of your drain spout. The rainwater you collect won’t be pure enough to drink, or safe for bathing, but you can use it to water your lawn and garden. This sounds OK, even patriotic, until you do the math, or the plumbing, or until you consider the wood-chip alternative.

The barrels are not cheap, even when subsidized they cost about $100 each. Add to this the cost and difficulty of setting up the collection system and the distribution hose. Water from your rain barrel will not flow through a normal nozzle as there is hardly any pressure. Expect watering to take a lot longer than you are used to.

40 gallon rain barrels. Two of these give about 70 usable gallons every heavy rain fall. That’s about 70¢ worth.

In Michigan you can not leave the water in your barrel over the winter, the water will freeze and the barrel will crack. You have to drain the tank completely every fall, an almost impossible task, and the tank is attached to a rainspout and the last bit of water is hard to get out. Still, you have to do it, or the barrel will crack. And the savings for all this is minimal. During a rainy month, you don’t need this water. During a dry month, there is no water to use. Even at the best, the The marginal cost of water in our town is less than 1¢ per gallon. For all the work and cost to set up, two complete 40 gallon tanks (like those shown) will give you at most about 70 usable gallons. That’s to say, almost 70¢ per full filling.

How much lawn can you water? Assume you like to water your lawn to the equivalent of 1″ of rain per week, your 70 gallons will water about 154 ft2 of lawn or garden, virtually nothing compared to the typical Michigan 2000 ft2 lawn. You’ll still have to get most of your water from the city’s main. All that work, for so little benefit.

Young trees with chip volcanos, 1 ft high x18″. Spread the chips to the diameter of the leaves.You don’t need more than 2″.

A far better option is wood chips. They don’t cover a lawn, but they’re great for shrubs, trees or a garden. Wood chips are easy to spread, and they stop weeds and hold water. The photo at left shows a wood chips around the shrubs, and a particularly poor use of wood chips around the trees. For shrubs, trees, or a garden, I suggest you put down 1 to 2 inches of wood chips. Surround a young tree at that depth to the diameter of the branches. Do not build a “chip volcano,” as this lazy landscaper has done.

Consider that, covering 500 ft2 of area to a depth of 1.5 inches will take about 60 cubic feet of wood chips. That will cost about $35 dollars at the local Home Depot. This is enough to hold about 1.25″ or rainwater, That’s about 100 ft3 or water or 800 gallons. The chips prevent excess evaporation while preventing weeds and slowly releasing the water to your garden. You do no work. The chips take almost no work to spread, and will keep on working for years, with no fear of frost-damage. A as the chips stop working, they biocompost slowly into fertilizer. That’s a win.

There is a worst option too, called a rain garden. This is often pushed by environmental-gooders. You dig a hole near your downspout, perhaps ten feet in diameter, by two feet deep, and plant native grasses (weeds). When it rains, the hole fills with water creating a mini wetland that will soon smell like the swamp that it is. If you are not lucky, the water will find a way to leak into your basement. If that’s your problem look here. If you are luckier, your mini-swamp will become the home of mosquitos, frogs, and snakes. The plants will grow, then die, and rot, and look awful. It is very hard to maintain native grasses. That’s why people drain swamps and grow trees or turf or vegetables. If you want to see a well-maintained rain garden, they have two on the campus of Lawrence Tech. A wetland isn’t bad, but you want drainage, Make a bioswale or muir.

Robert Buxbaum, May 31, 2023. I ran for water commissioner some years back.

Hydrogenation, how we’ve already entered the hydrogen economy

The hydrogen economy is generally thought to come in some distant future, where your car (and perhaps your home) runs on hydrogen, and the hydrogen, presumably, is made by clean nuclear or renewable solar or wind power. This is understood to be better than the current state of things where your car runs on dirty gasoline, and your home runs on coal or gas, except when the sun is shining bright and the wind is blowing hard. Our homes and cars can not run on solar or wind alone, although solar cells have become quite cheap, because solar power is only available in the daytime, basically for 6 hours, from about 9AM to 3PM. Hydrogen has been proposed as a good way to store solar and wind energy that you can’t use, but it’s not easy to store hydrogen — or is it? I’d like to suggest that, to a decent extent, we already store green hydrogen and use it to run our trucks. We store this hydrogen in the form of Diesel fuel, so you don’t realize it’s hydrogen.

Much of the oil in the United States these days comes from tar sands and shale. It doesn’t flow well at room temperature, and is too heavy and gooey for normal use. We could distill this crude oil and use only the light parts, but that would involve throwing away a huge majority of the oil. Instead we steam reform it to gasoline, ethylene and other products. The reaction is something like this, presuming an input feed of naphtha, C10H8:

C10H8 + 2 H2O –> C7H8 + C2H4 + CO2.

The C2H4 component is ethylene. We use it to make plastics. The C7H8 is called toluene. It is a component of high octane gasoline (octane rating about 114). The inventor of the process, Eugene Jules Houdry claimed to have won WWII for the allies because his secret process (Houdryflow catalytic cracking) allowed high production of lots of gasoline of very high octane, giving US and British planes and trucks higher mpg than the Germans or Japanese had. It was a great money maker, but companies can make even more by adding hydrogen.

Schematic of the hydrocracking process, from the US energy information agency

Over the last 2-3 decades, refineries have been adding catalytic hydrogenation processes. These convert high octane aromatic products, like toluene to low -octane diesel and jet fuel. These products sell for more. Aromatic toluene is exposed to hydrogen at about 500°C and 300 psi (20 bar) to produce heptane, an excellent diesel fuel with about 7% more energy content than toluene per gallon.

C7H8 + 4H2 –> C7H16.

Diesel fuel sell for about 20% more than gasoline per gallon, in part because of the higher energy content, and because Diesel engines are more efficient than gas engines. What’s more, toluene expands as it’s converted to heptane. One gallon of toluene converts to 1.16 gallons of heptane. As a result hydrogenation adds about 40% to the sales price per molecule. Refineries have found that they can make significant money this way if they can buy cheap hydrogen. Over the last few years, several refineries in Norway and Texas (high sun and wind areas) have added hydrogenators along with electrolysis units to produce the cheap hydrogen when no one needs the unwanted electricity generated when supply exceeds demand. Here is an analysis of the thermodynamics of this type of hydrogen generation.

Robert Buxbaum, May 11, 2023