Category Archives: Energy savings

Alkaline batteries have second lives

Most people assume that alkaline batteries are one-time only, throwaway items. Some have used rechargeable cells, but these are Ni-metal hydride, or Ni-Cads, expensive variants that have lower power densities than normal alkaline batteries, and almost impossible to find in stores. It would be nice to be able to recharge ordinary alkaline batteries, e.g. when a smoke alarm goes off in the middle of the night and you find you’re out, but people assume this is impossible. People assume incorrectly.

Modern alkaline batteries are highly efficient: more efficient than even a few years ago, and that always suggests reversibility. Unlike the acid batteries you learned about in highschool chemistry class (basic chemistry due to Volta) the chemistry of modern alkaline batteries is based on Edison’s alkaline car batteries. They have been tweaked to an extent that even the non-rechargeable versions can be recharged. I’ve found I can reliably recharge an ordinary alkaline cell, 9V, at least once using the crude means of a standard 12 V car battery charger by watching the amperage closely. It only took 10 minutes. I suspect I can get nine lives out of these batteries, but have not tried.

To do this experiment, I took a 9 V alkaline that had recently died, and finding I had no replacement, I attached it to a 6 Amp, 12 V, car battery charger that I had on hand. I would have preferred to use a 2 A charger and ideally a charger designed to output 9-10 V, but a 12 V charger is what I had available, and it worked. I only let it charge for 10 minutes because, at that amperage, I calculated that I’d recharged to the full 1 Amp-hr capacity. Since the new alkaline batteries only claimed 1 amp hr, I figured that more charge would likely do bad things, even perhaps cause the thing to blow up.  After 5 minutes, I found that the voltage had returned to normal and the battery worked fine with no bad effects, but went for the full 10 minutes. Perhaps stopping at 5 would have been safer.

I changed for 10 minutes (1/6 hour) because the battery claimed a capacity of 1 Amp-hour when new. My thought was 1 amp-hour = 1 Amp for 1 hour, = 6 Amps for 1/6 hour = ten minutes. That’s engineering math for you, the reason engineers earn so much. I figured that watching the recharge for ten minutes was less work and quicker than running to the store (20 minutes). I used this battery in my firm alarm, and have tested it twice since then to see that it works. After a few days in my fire alarm, I took it out and checked that the voltage was still 9 V, just like when the battery was new. Confirming experiments like this are a good idea. Another confirmation occurred when I overcooked some eggs and the alarm went off from the smoke.

If you want to experiment, you can try a 9V as I did, or try putting a 1.5 volt AA or AAA battery in a charger designed for rechargeables. Another thought is to see what happens when you overcharge. Keep safe: do this in a wood box outside at a distance, but I’d like to know how close I got to having an exploding energizer. Also, it would be worthwhile to try several charge/ discharge cycles to see how the energy content degrades. I expect you can get ~9 recharges with a “non-rechargeable” alkaline battery because the label says: “9 lives,” but even getting a second life from each battery is a significant savings. Try using a charger that’s made for rechargeables. One last experiment: If you’ve got a cell phone charger that works on a car battery, and you get the polarity right, you’ll find you can use a 9V alkaline to recharge your iPhone or Android. How do I know? I judged a science fair not long ago, and a 4th grader did this for her science fair project.

Robert Buxbaum, April 19, 2018. For more, semi-dangerous electrochemistry and biology experiments.

Change home air filters 3 times per year

Energy efficient furnaces use a surprisingly large amount of electricity to blow the air around your house. Part of the problem is the pressure drop of the ducts, but quite a lot of energy is lost bowing air through the dust filter. An energy-saving idea: replace the filter on your furnace twice a year or more. Another idea, you don’t have to use the fanciest of filters. Dirty filters provide a lot of back-pressure especially when they are dirty.

I built a water manometer, see diagram below to measure the pressure drop through my furnace filters. The pressure drop is measured from the difference in the height of the water column shown. Each inch of water is 0.04 psi or 275 Pa. Using this pressure difference and the flow rating of the furnace, I calculated the amount of power lost by the following formula:

W = Q ∆P/ µ.

Here W is the amount of power use, Watts, Q is flow rate m3/s, ∆P = the pressure drop in Pa, and µ is the efficiency of the motor and blower, typically about 50%.

With clean filters (two different brands), I measured 1/8″ and 1/4″ of water column, or a pressure drop of 0.005 and 0.01 psi, depending on the filter. The “better the filter”, that is the higher the MERV rating, the higher the pressure drop. I also measured the pressure drop through a 6 month old filter and found it to be 1/2″ of water, or 0.02 psi or 140 Pa. Multiplying this by the amount of air moved, 1000 cfm =  25 m3 per minute or 0.42 m3/s, and dividing by the efficiency, I calculate a power use of 118 W. That is 0.118 kWh/hr. or 2.8 kWh/day.

water manometer used to measure pressure drop through the filter of my furnace. I stuck two copper tubes into the furnace, and attached a plastic hose. Pressure was measured from the difference in the water level in the hose.

The water manometer I used to measure the pressure drop through the filter of my furnace. I stuck two copper tubes into the furnace, and attached a plastic tube half filled with water between the copper tubes. Pressure was measured from the difference in the water level in the plastic tube. Each 1″ of water is 280 Pa or 0.04psi.

At the above rate of power use and a cost of electricity of 11¢/kWhr, I find it would cost me an extra 4 KWhr or about 31¢/day to pump air through my dirty-ish filter; that’s $113/year. The cost through a clean filter would be about half this, suggesting that for every year of filter use I spend an average of $57t where t is the use life of the filter.

To calculate the ideal time to change filters I set up the following formula for the total cost per year $, including cost per year spent on filters (at $5/ filter), and the pressure-induced electric cost:

$ = 5/t + 57 t.

The shorter the life of the filter, t, the more I spend on filters, but the less on electricity. I now use calculus to find the filter life that produces the minimum $, and determine that $ is a minimum at a filter life t = √5/57 = .30 years.  The upshot, then, if you filters are like mine, you should change your three times a year, or so; every 3.6 months to be super-exact. For what it’s worth, I buy MERV 5 filters at Ace or Home Depot. If I bought more expensive filters, the optimal change time would likely be once or twice per year. I figure that, unless you are very allergic or make electronics in your basement you don’t need a filter with MERV rating higher than 8 or so.

I’ve mentioned in a previous essay/post that dust starts out mostly as dead skin cells. Over time dust mites eat the skin, some pretty nasty stuff. Most folks are allergic to the mites, but I’m not convinced that the filter on your furnace dies much to isolate you from them since the mites, etc tend to hang out in your bed and clothes (a charming thought, I know).

Old fashioned, octopus furnace. Free convection.

Old fashioned, octopus furnace. Free convection.

The previous house I had, had no filter on the furnace (and no blower). I noticed no difference in my tendency to cough or itch. That furnace relied for circulation on the tendency for hot air to rise. That is, “free convection” circulated air through the home and furnace by way of “Octopus” ducts. If you wonder what a furnace like that looks like here’s a picture.

I calculate that a 10 foot column of air that is 30°C warmer than that in a house will have a buoyancy of about 0.00055 psi (1/8″ of water). That’s enough pressure to drive circulation through my home, and might have even driven air through a clean, low MERV dust filter. The furnace didn’t use any more gas than a modern furnace would, as best I could tell, since I was able to adjust the damper easily (I could see the flame). It used no electricity except for the thermostat control, and the overall cost was lower than for my current, high-efficiency furnace with its electrical blower and forced convection.

Robert E. Buxbaum, December 7, 2017. I ran for water commissioner, and post occasional energy-saving or water saving ideas. Another good energy saver is curtains. And here are some ideas on water-saving, and on toilet paper.

The energy cost of airplanes, trains, and buses

I’ve come to conclude that airplane travel makes a lot more sense than high-speed trains. Consider the marginal energy cost of a 90kg (200 lb) person getting on a 737-800, the most commonly flown commercial jet in US service. For this plane, the ratio of lift/drag at cruise speed is 19, suggesting an average value of 15 or so for a 1 hr trip when you include take-off and landing. The energy cost of his trip is related to the cost of jet fuel, about $3.20/gallon, or about $1/kg. The heat energy content of jet fuel is 44 MJ/kg. Assuming an average engine efficiency of 21%, we calculate a motive-energy cost of 1.1 x 10-7 $/J. The amount of energy per mile is just force times distance. Force is the person’s weight in (in Newtons) divided by 15, the lift/drag ratio. The energy use per mile (1609 m) is 90*9.8*1609/15 = 94,600 J. Multiplying by the $-per-Joule we find the marginal cost is 1¢ per mile: virtually nothing compared to driving.

The Wright brothers testing their gliders in 1901 (left) and 1902 (right). The angle of the tether reflects the dramatic improvement in the lift-to-drag ratio.

The Wright brothers testing their gliders in 1901 (left) and 1902 (right). The angle of the tether reflects a dramatic improvement in lift-to-drag ratio; the marginal cost per mile is inversely proportional to the lift-to-drag ratio.

The marginal cost of 1¢/passenger mile explains why airplanes offer crazy-low, fares to fill seats. But this is just the marginal cost. The average energy cost is higher since it includes the weight of the plane. On a reasonably full 737 flight, the passengers and luggage  weigh about 1/4 as much as the plane and its fuel. Effectively, each passenger weighs 800 lbs, suggesting a 4¢/mile energy cost, or $20 of energy per passenger for the 500 mile flight from Detroit to NY. Though the fuel rate of burn is high, about 5000 lbs/hr, the mpg is high because of the high speed and the high number of passengers. The 737 gets somewhat more than 80 passenger miles per gallon, far less than the typical person driving — and the 747 does better yet.

The average passengers must pay more than $20 for a flight to cover wages, capital, interest, profit, taxes, and landing fees. Still, one can see how discount airlines could make money if they have a good deal with a hub airport, one that allows them low landing fees and allows them to buy fuel at near cost.

Compare this to any proposed super-fast or Mag-lev train. Over any significant distance, the plane will be cheaper, faster, and as energy-efficient. Current US passenger trains, when fairly full, boast a fuel economy of 200 passenger miles per gallon, but they are rarely full. Currently, they take some 15 hours to go Detroit to NY, in part because they go slow, and in part because they go via longer routes, visiting Toronto and Montreal in this case, with many stops along the way. With this long route, even if the train got 150 passenger mpg, the 750 mile trip would use 5 gallons per passenger, compared to 6.25 for the flight above. This is a savings of $5, at a cost of 20 hours of a passenger’s life. Even train speeds were doubled, the trip would still take 10 hours including stops, and the energy cost would be higher. As for price, beyond the costs of wages, capital, interest, profit, taxes, and depot fees, trains have to add the cost of new track and track upkeep. Wages too will be higher because the trip takes longer. While I’d be happy to see better train signaling to allow passenger trains to go 100 mph on current, freight-compatible lines, I can’t see the benefit of government-funded super-track for 150+ mph trains that will still take 10 hours and will still be half-full.

Something else removing my enthusiasm for super trains is the appearance of new short take-off and landing jets. Some years ago, I noted that Detroit’s Coleman Young airport no longer has commercial traffic because its runway was too short, 1051m. I’m happy to report that Bombardier’s new CS100s should make small airports like this usable. A CS100 will hold 120 passengers, requires only 1463m of runway, and is quiet enough for city use. The economics are such that it’s hard to imagine mag-lev beating this for the proposed US high-speed train routes: Dallas to Houston; LA to San José to San Francisco; or Chicago-Detroit-Toledo-Cleveland-Pittsburgh. So far US has kept out these planes because Boeing claims unfair competition, but I trust that this is just a delay. For shorter trips, I note that modern busses are as fast and energy efficient as trains, and far cheaper because they share the road costs with cars and trucks.

If the US does want to spend money, I’d suggest improving inner-city airports, and to improve roads for higher speed car and bus traffic. If you want low pollution and high efficiency, how about hydrogen hybrid buses?

Robert Buxbaum, October 30, 2017. I taught engineering for 10 years at Michigan State, and my company, REB Research, makes hydrogen generators and hydrogen purifiers.

Highest temperature superconductor so far: H2S

The new champion of high-temperature superconductivity is a fairly common gas, hydrogen sulphide, H2S. By compressing it to 150 GPa, 1.5 million atm., a team lead by Alexander Drozdov and M. Eremets of the Max Planck Institute coaxed superconductivity from H2S at temperatures as high as 203.5°K (-70°C). This is, by far, the warmest temperature of any superconductor discovered to-date, and it’s main significance is to open the door for finding superconductivity in other, related hydrogen compounds — ideally at warmer temperatures and/or less-difficult pressures. Among the interesting compounds that will certainly get more attention: PH3, BH3, Methyl mercaptan, and even water, either alone or in combination with H2S.

Relationship between H2S pressure and critical temperature for superconductivity.

Relation between pressure and critical temperature for superconductivity, Tc, in H2S (filled squares) and D2S (open red). The magenta point was measured by magnetic susceptibility (Nature)

H2S superconductivity appears to follow the standard, Bardeen–Cooper–Schrieffer theory (B-C-S). According to this theory superconductivity derives from the formation of pairs of opposite-spinning electrons (Cooper pairs) particularly in light, stiff, semiconductor materials. The light, positively charged lattice quickly moves inward to follow the motion of the electrons, see figure below. This synchronicity of motion is posited to create an effective bond between the electrons, enough to counter the natural repulsion, and allows the the pairs to condense to a low-energy quantum state where they behave as if they were very large and very spread out. In this large, spread out state, they slide through the lattice without interacting with the atoms or the few local vibrations and unpaired electrons found at low temperatures. From this theory, we would expect to find the highest temperature superconductivity in the lightest lattice, materials like ice, boron hydride, magnesium hydride, or H2S, and we expect to find higher temperature behavior in the hydrogen version, H2O, or H2S than in the heavier, deuterium analogs, D2O or D2S. Experiments with H2S and D2S (shown at right) confirm this expectation suggesting that H2S superconductivity is of the B-C-S type. Sorry to say, water has not shown any comparable superconductivity in experiments to date.

We have found high temperature superconductivity in few of materials that we would expect from B-C-S theory, and yet-higher temperature is seen in many unexpected materials. While hydride materials generally do become superconducting, they mostly do so only at low temperatures. The highest temperature semiconductor B-C-S semiconductor discovered until now was magnesium boride, Tc = 27 K. More bothersome, the most-used superconductor, Nb-Sn, and the world record holder until now, copper-oxide ceramics, Tc = 133 K at ambient pressure; 164 K at 35 GPa (350,000 atm) were not B-C-S. There is no version of B-C-S theory to explain why these materials behave as well as they do, or why pressure effects Tc in them. Pressure effects Tc in B-C-S materials by raising the energy of small-scale vibrations that would be necessary to break the pairs. Why should pressure effect copper ceramics? No one knows.

The standard theory of superconductivity relies on Cooper pairs of electrons held together by lattice elasticity.  The lighter and stiffer the lattice, the higher temperature the superconductivity.

The standard theory of superconductivity relies on Cooper pairs of electrons held together by lattice elasticity. The lighter and stiffer the lattice, the higher temperature the superconductivity.

The assumption is that high-pressure H2S acts as a sort of metallic hydrogen. From B-C-S theory, metallic hydrogen was predicted to be a room-temperature superconductor because the material would likely to be a semi-metal, and thus a semiconductor at all temperatures. Hydrogen’s low atomic weight would mean that there would be no significant localized vibrations even at room temperature, suggesting room temperature superconductivity. Sorry to say, we have yet to reach the astronomical pressures necessary to make metallic hydrogen, so we don’t know if this prediction is true. But now it seems H2S behaves nearly the same without requiring the extremely high pressures. It is thought that high temperature H2S superconductivity occurs because H2S somewhat decomposes to H3S and S, and that the H3S provides a metallic-hydrogen-like operative lattice. The sulfur, it’s thought, just goes along for the ride. If this is the explanation, we might hope to find the same behaviors in water or phosphine, PH3, perhaps when mixed with H2S.

One last issue, I guess, is what is this high temperature superconductivity good for. As far as H2S superconductivity goes, the simple answer is that it’s probably good for nothing. The pressures are too high. In general though, high temperature superconductors like NbSn are important. They have been valuable for making high strength magnets, and for prosaic applications like long distance power transmission. The big magnets are used for submarine hunting, nuclear fusion, and (potentially) for levitation trains. See my essay on Fusion here, it’s what I did my PhD on — in chemical engineering, and levitation trains, potentially, will revolutionize transport.

Robert Buxbaum, December 24, 2015. My company, REB Research, does a lot with hydrogen. Not that we make superconductors, but we make hydrogen generators and purifiers, and I try to keep up with the relevant hydrogen research.

my electric cart of the future

Buxbaum and Sperka cart of future

Buxbaum and Sperka show off the (shopping) cart of future, Oak Park parade July 4, 2015.

A Roman chariot did quite well with only 1 horse-power, while the average US car requires 100 horses. Part of the problem is that our cars weigh more than a chariot and go faster, 80 mph vs of 25 mph. But most city applications don’t need all that weight nor all of that speed. 20-25 mph is fine for round-town errands, and should be particularly suited to use by young drivers and seniors.

To show what can be done with a light vehicle that only has to go 20 mph, I made this modified shopping cart, and fitted it with a small, 1 hp motor. I call it the cart-of the future and paraded around with it at our last 4th of July parade. It’s high off the ground for safety, reasonably wide for stability, and has the shopping cart cage and seat-belts for safety. There is also speed control. We went pretty slow in the parade, but here’s a link to a video of the cart zipping down the street at 17.5 mph.

In the 2 months since this picture was taken, I’ve modified the cart to have a chain drive and a rear-wheel differential — helpful for turning. My next modification, if I get to it, will be to switch to hydrogen power via a fuel cell. One of the main products we make is hydrogen generators, and I’m hoping to use the cart to advertise the advantages of hydrogen power.

Robert E. Buxbaum, August 28, 2015. I’m the one in the beige suit.

My latest invention: improved fuel cell reformer

Last week, I submitted a provisional patent application for an improved fuel reformer system to allow a fuel cell to operate on ordinary, liquid fuels, e.g. alcohol, gasoline, and JP-8 (diesel). I’m attaching the complete text of the description, below, but since it is not particularly user-friendly, I’d like to add a small, explanatory preface. What I’m proposing is shown in the diagram, following. I send a hydrogen-rich stream plus ordinary fuel and steam to the fuel cell, perhaps with a pre-reformer. My expectation that the fuel cell will not completely convert this material to CO2 and water vapor, even with the pre-reformer. Following the fuel cell, I then use a water-gas shift reactor to convert product CO and H2O to H2 and CO2 to increase the hydrogen content of the stream. I then use a semi-permeable membrane to extract the waste CO2 and water. I recirculate the hydrogen and the rest of the water back to the fuel cell to generate extra power, prevent coking, and promote steam reforming. I calculate the design should be able to operate at, perhaps 0.9 Volt per cell, and should nearly double the energy per gallon of fuel compared to ordinary diesel. Though use of pure hydrogen fuel would give better mileage, this design seems better for some applications. Please find the text following.

Use of a Water-Gas shift reactor and a CO2 extraction membrane to improve fuel utilization in a solid oxide fuel cell system.

Inventor: Dr. Robert E. Buxbaum, REB Research, 12851 Capital St, Oak Park, MI 48237; Patent Pending.

Solid oxide fuel cells (SOFCs) have improved over the last 10 years to the point that they are attractive options for electric power generation in automobiles, airplanes, and auxiliary power supplies. These cells operate at high temperatures and tolerate high concentrations of CO, hydrocarbons and limited concentrations of sulfur (H2S). SOFCs can operate on reformate gas and can perform limited degrees of hydrocarbon reforming too – something that is advantageous from the stand-point of fuel logistics: it’s far easier to transport a small volume of liquid fuel that it is a large volume of H2 gas. The main problem with in-situ reforming is the danger of coking the fuel cell, a problem that gets worse when reforming is attempted with the more–desirable, heavier fuels like gasoline and JP-8. To avoid coking the fuel cell, heavier fuels are typically reforming before hand in a separate reactor, typically by partial oxidation at auto-thermal conditions, a process that typically adds nitrogen and results in the inability to use the natural heat given off by the fuel cell. Steam reforming has been suggested as an option (Chick, 2011) but there is not enough heat released by the fuel cell alone to do it with the normal fuel cycles.

Another source of inefficiency in reformate-powered SOFC systems is basic to the use of carbon-containing fuels: the carbon tends to leave the fuel cell as CO instead of CO2. CO in the exhaust is undesirable from two perspectives: CO is toxic, and quite a bit of energy is wasted when the carbon leaves in this form. Normally, carbon can not leave as CO2 though, since CO is the more stable form at the high temperatures typical of SOFC operation. This patent provides solutions to all these problems through the use of a water-gas shift reactor and a CO2-extraction membrane. Find a drawing of a version of the process following.

RE. Buxbaum invention: A suggested fuel cycle to allow improved fuel reforming with a solid oxide fuel cell

RE. Buxbaum invention: A suggested fuel cycle to allow improved fuel reforming with a solid oxide fuel cell

As depicted in Figure 1, above, the fuel enters, is mixed with steam or partially boiled water, and heated in the rectifying heat exchanger. The hot steam + fuel mix then enters a steam reformer and perhaps a sulfur removal stage. This would be typical steam reforming except for a key difference: the heat for reforming comes (at least in part) from waste heat of the SOFC. Normally speaking there would not be enough heat, but in this system we add a recycle stream of H2-rich gas to the fuel cell. This stream, produced from waste CO in a water-gas shift reactor (the WGS) shown in Figure 1. This additional H2 adds to the heat generated by the SOFC and also adds to the amount of water in the SOFC. The net effect should be to reduce coking in the fuel cell while increasing the output voltage and providing enough heat for steam reforming. At least, that is the thought.

SOFCs differ from proton conducting FCS, e.g. PEM FCs, in that the ion that moves is oxygen, not hydrogen. As a result, water produced in the fuel cell ends up in the hydrogen-rich stream and not in the oxygen stream. Having this additional water in the fuel stream of the SOFC can promote fuel reforming within the FC. This presents a difficulty in exhausting the waste water vapor in that a means must be found to separate it from un-combusted fuel. This is unlike the case with PEM FCs, where the waste water leaves with the exhaust air. Our main solution to exhausting the water is the use of a membrane and perhaps a knockout drum to extract it from un-combusted fuel gases.

Our solution to the problem of carbon leaving the SOFC as CO is to react this CO with waste H2O to convert it to CO2 and additional H2. This is done in a water gas shift reactor, the WGS above. We then extract the CO2 and remaining, unused water through a CO2- specific membrane and we recycle the H2 and unconverted CO back to the SOFC using a low temperature recycle blower. The design above was modified from one in a paper by PNNL; that paper had neither a WGS reactor nor a membrane. As a result it got much worse fuel conversion, and required a high temperature recycle blower.

Heat must be removed from the SOFC output to cool it to a temperature suitable for the WGS reactor. In the design shown, the heat is used to heat the fuel before feeding it to the SOFC – this is done in the Rectifying HX. More heat must be removed before the gas can go to the CO2 extractor membrane; this heat is used to boil water for the steam reforming reaction. Additional heat inputs and exhausts will be needed for startup and load tracking. A solution to temporary heat imbalances is to adjust the voltage at the SOFC. The lower the voltage the more heat will be available to radiate to the steam reformer. At steady state operation, a heat balance suggests we will be able to provide sufficient heat to the steam reformer if we produce electricity at between 0.9 and 1.0 Volts per cell. The WGS reactor allows us to convert virtually all the fuel to water and CO2, with hardly any CO output. This was not possible for any design in the PNNL study cited above.

The drawing above shows water recycle. This is not a necessary part of the cycle. What is necessary is some degree of cooling of the WGS output. Boiling recycle water is shown because it can be a logistic benefit in certain situations, e.g. where you can not remove the necessary CO2 without removing too much of the water in the membrane module, and in mobile military situations, where it’s a benefit to reduce the amount of material that must be carried. If water or fuel must be boiled, it is worthwhile to do so by cooling the output from the WGS reactor. Using this heat saves energy and helps protect the high-selectivity membranes. Cooling also extends the life of the recycle blower and allows the lower-temperature recycle blowers. Ideally the temperature is not lowered so much that water begins to condense. Condensed water tends to disturb gas flow through a membrane module. The gas temperatures necessary to keep water from condensing in the module is about 180°C given typical, expected operating pressures of about 10 atm. The alternative is the use of a water knockout and a pressure reducer to prevent water condensation in membranes operated at lower temperatures, about 50°C.

Extracting the water in a knockout drum separate from the CO2 extraction has the secondary advantage of making it easier to adjust the water content in the fuel-gas stream. The temperature of condensation can then be used to control the water content; alternately, a separate membrane can extract water ahead of the CO2, with water content controlled by adjusting the pressure of the liquid water in the exit stream.

Some description of the membrane is worthwhile at this point since a key aspect of this patent – perhaps the key aspect — is the use of a CO2-extraction membrane. It is this addition to the fuel cycle that allows us to use the WGS reactor effectively to reduce coking and increase efficiency. The first reasonably effective CO2 extraction membranes appeared only about 5 years ago. These are made of silicone polymers like dimethylsiloxane, e.g. the Polaris membrane from MTR Inc. We can hope that better membranes will be developed in the following years, but the Polaris membrane is a reasonably acceptable option and available today, its only major shortcoming being its low operating temperature, about 50°C. Current Polaris membranes show H2-CO2 selectivity about 30 and a CO2 permeance about 1000 Barrers; these permeances suggest that high operating pressures would be desirable, and the preferred operation pressure could be 300 psi (20 atm) or higher. To operate the membrane with a humid gas stream at high pressure and 50°C will require the removal of most of the water upstream of the membrane module. For this, I’ve included a water knockout, or steam trap, shown in Figure 1. I also include a pressure reduction valve before the membrane (shown as an X in Figure 1). The pressure reduction helps prevent water condensation in the membrane modules. Better membranes may be able to operate at higher temperatures where this type of water knockout is not needed.

It seems likely that, no matter what improvements in membrane technology, the membrane will have to operate at pressures above about 6 atm, and likely above about 10 atm (upstream pressure) exhausting CO2 and water vapor to atmosphere. These high pressures are needed because the CO2 partial pressure in the fuel gas leaving the membrane module will have to be significantly higher than the CO2 exhaust pressure. Assuming a CO2 exhaust pressure of 0.7 atm or above and a desired 15% CO2 mol fraction in the fuel gas recycle, we can expect to need a minimum operating pressure of 4.7 atm at the membrane. Higher pressures, like 10 or 20 atm could be even more attractive.

In order to reform a carbon-based fuel, I expect the fuel cell to have to operate at 800°C or higher (Chick, 2011). Most fuels require high temperatures like this for reforming –methanol being a notable exception requiring only modest temperatures. If methanol is the fuel we will still want a rectifying heat exchanger, but it will be possible to put it after the Water-Gas Shift reactor, and it may be desirable for the reformer of this fuel to follow the fuel cell. When reforming sulfur-containing fuels, it is likely that a sulfur removal reactor will be needed. Several designs are available for this; I provide references to two below.

The overall system design I suggest should produce significantly more power per gm of carbon-based feed than the PNNL system (Chick, 2011). The combination of a rectifying heat exchange, a water gas reactor and CO2 extraction membrane recovers chemical energy that would otherwise be lost with the CO and H2 bleed steam. Further, the cooling stage allows the use of a lower temperature recycle pump with a fairly low compression ratio, likely 2 or less. The net result is to lower the pump cost and power drain. The fuel stream, shown in orange, is reheated without the use of a combustion pre-heater, another big advantage. While PNNL (Chick, 2011) has suggested an alternative route to recover most of the chemical energy through the use of a turbine power generator following the fuel cell, this design should have several advantages including greater reliability, and less noise.


1.   A power-producing, fuel cell system including a solid oxide fuel cell (SOFC) where a fuel-containing output stream from the fuel cell goes to a regenerative heat exchanger followed by a water gas shift reactor followed by a membrane means to extract waste gases including carbon dioxide (CO2) formed in said reactor. Said reactor operating a temperatures between 200 and 450°C and the extracted carbon dioxide leaving at near ambient pressure; the non-extracted gases being recycled to the fuel cell.

Main References:

The most relevant reference here is “Solid Oxide Fuel Cell and Power System Development at PNNL” by Larry Chick, Pacific Northwest National Laboratory March 29, 2011: Also see US patent  8394544. it’s from the same authors and somewhat similar, though not as good and only for methane, a high-hydrogen fuel.

Robert E. Buxbaum, REB Research, May 11, 2015.

No need to conserve energy

Earth day, energy conservation stamp from the 1970s

Energy conservation stamp from the early 70s

I’m reminded that one of the major ideas of Earth Day, energy conservation, is completely unnecessary: Energy is always conserved. It’s entropy that needs to be conserved.

The entropy of the universe increases for any process that occurs, for any process that you can make occur, and for any part of any process. While some parts of processes are very efficient in themselves, they are always entropy generators when considered on a global scale. Entropy is the arrow of time: if entropy ever goes backward, time has reversed.

A thought I’ve had on how do you might conserve entropy: grow trees and use them for building materials, or convert them to gasoline, or just burn them for power. Under ideal conditions, photosynthesis is about 30% efficient at converting photon-energy to glucose. (photons + CO2 + water –> glucose + O2). This would be nearly same energy conversion efficiency as solar cells if not for the energy the plant uses to live. But solar cells have inefficiency issues of their own, and as a result the land use per power is about the same. And it’s a lot easier to grow a tree and dispose of forest waste than it is to make a solar cell and dispose of used coated glass and broken electric components. Just some Earth Day thoughts from Robert E. Buxbaum. April 24, 2015

In praise of openable windows and leaky construction

It’s summer in Detroit, and in all the tall buildings the air conditioners are humming. They have to run at near-full power even on evenings and weekends when the buildings are near empty, and on cool days. This would seem to waste a lot of power and it does, but it’s needed for ventilation. Tall buildings are made air-tight with windows that don’t open — without the AC, there’s be no heat leaving at all, no way for air to get in, and no way for smells to get out.

The windows don’t open because of the conceit of modern architecture; air tight building are believed to be good design because they have improved air-conditioner efficiency when the buildings are full, and use less heat when the outside world is very cold. That’s, perhaps 10% of the year. 

No openable windows, but someone figured you should suffer for art

Modern architecture with no openable windows. Someone wants you to suffer for his/her art.

Another reason closed buildings are popular is that they reduce the owners’ liability in terms of things flying in or falling out. Owners don’t rain coming in, or rocks (or people) falling out. Not that windows can’t be made with small openings that angle to avoid these problems, but that’s work and money and architects like to spend time and money only on fancy facades that look nice (and are often impractical). Besides, open windows can ruin the cool lines of their modern designs, and there’s nothing worse, to them, than a building that looks uncool despite the energy cost or the suffering of the inmates of their art.

Most workers find sealed buildings claustrophobic, musty, and isolating. That pain leads to lost productivity: Fast Company reported that natural ventilation can increase productivity by up to 11 percent. But, as with leading clothes stylists, leading building designers prefer uncomfortable and uneconomic to uncool. If people in the building can’t smell an ocean breeze, or can’t vent their area in a fire (or following a burnt burrito), that’s a small price to pay for art. Art is absurd, and it’s OK with the architect if fire fumes have to circulate through the entire building before they’re slowly vented. Smells add character, and the architect is gone before the stench gets really bad. 

No one dreams of working in an unventilated glass box.

No one dreams of working in a glass box. If it’s got to be an office, give some ventilation.

So what’s to be done? One can demand openable windows and hope the architect begrudgingly obliges. Some of the newest buildings have gone this route. A simpler, engineering option is to go for leaky construction — cracks in the masonry, windows that don’t quite seal. I’ve maintained and enlarged the gap under the doors of my laboratory buildings to increase air leakage; I like to have passive venting for toxic or flammable vapors. I’m happy to not worry about air circulation failing at the worst moment, and I’m happy to not have to ventilate at night when few people are here. To save some money, I increase the temperature range at night and weekends so that the buildings is allowed to get as hot as 82°F before the AC goes on, or as cold as 55°F without the heat. Folks who show up on weekends may need a sweater, but normally no one is here. 

A bit of air leakage and a few openable windows won’t mess up the air-conditioning control because most heat loss is through the walls and black body radiation. And what you lose in heat infiltration you gain by being able to turn off the AC circulation system when you know there are few people in the building (It helps to have a key-entry system to tell you how many people are there) and the productivity advantage of occasional outdoor smells coming in, or nasty indoor smells going out.

One irrational fear of openable windows is that some people will not close the windows in the summer or in the dead of winter. But people are quite happy in the older skyscrapers (like the empire state building) built before universal AC. Most people are nice — or most people you’d want to employ are. They will respond to others feelings to keep everyone comfortable. If necessary a boss or building manager may enforce this, or may have to move a particularly crusty miscreant from the window. But most people are nice, and even a degree of discomfort is worth the boost to your psyche when someone in management trusts you to control something of the building environment.

Robert E. Buxbaum, July 18, 2014. Curtains are a plus too — far better than self-darkening glass. They save energy, and let you think that management trusts you to have power over your environment. And that’s nice.

The future of steamships: steam

Most large ships and virtually all locomotives currently run on diesel power. But the diesel  engine does not drive the wheels or propeller directly; the transmission would be too big and complex. Instead, the diesel engine is used to generate electric power, and the electric power drives the ship or train via an electric motor, generally with a battery bank to provide a buffer. Current diesel generators operate at 75-300 rpm and about 40-50% efficiency (not bad), but diesel fuel is expensive. It strikes me, therefore that the next step is to switch to a cheaper fuel like coal or compressed natural gas, and convert these fuels to electricity by a partial or full steam cycle as used in land-based electric power plants

Ship-board diesel engine, 100 MW for a large container ship

Diesel engine, 100 MW for a large container ship

Steam powers all nuclear ships, and conventionally boiled steam provided the power for thousands of Liberty ships and hundreds of aircraft carriers during World War 2. Advanced steam turbine cycles are somewhat more efficient, pushing 60% efficiency for high pressure, condensed-turbine cycles that consume vaporized fuel in a gas turbine and recover the waste heat with a steam boiler exhausting to vacuum. The higher efficiency of these gas/steam turbine engines means that, even for ships that burn ship-diesel fuel (so-called bunker oil) or natural gas, there can be a cost advantage to having a degree of steam power. There are a dozen or so steam-powered ships operating on the great lakes currently. These are mostly 700-800 feet long, and operate with 1950s era steam turbines, burning bunker oil or asphalt. US Steel runs the “Arthur M Anderson”, Carson J Callaway” , “John G Munson” and “Philip R Clarke”, all built-in 1951/2. The “Upper Lakes Group” runs the “Canadian Leader”, “Canadian Provider”, “Quebecois”, and “Montrealais.” And then there is the coal-fired “Badger”. Built in 1952, the Badger is powered by two, “Skinner UniFlow” double-acting, piston engines operating at 450 psi. The Badger is cost-effective, with the low-cost of the fuel making up for the low efficiency of the 50’s technology. With larger ships, more modern boilers and turbines, and with higher pressure boilers and turbines, the economics of steam power would be far better, even for ships with modern pollution abatement.

Nuclear steam boilers can be very compact

Nuclear steam boilers can be very compact

Steam powered ships can burn fuels that diesel engines can’t: coal, asphalts, or even dry wood because fuel combustion can be external to the high pressure region. Steam engines can cost more than diesel engines do, but lower fuel cost can make up for that, and the cost differences get smaller as the outputs get larger. Currently, coal costs 1/10 as much as bunker oil on a per-energy basis, and natural gas costs about 1/5 as much as bunker oil. One can burn coal cleanly and safely if the coal is dried before being loaded on the ship. Before burning, the coal would be powdered and gassified to town-gas (CO + H2O) before being burnt. The drying process removes much of the toxic impact of the coal by removing much of the mercury and toxic oxides. Gasification before combustion further reduces these problems, and reduces the tendency to form adhesions on boiler pipes — a bane of old-fashioned steam power. Natural gas requires no pretreatment, but costs twice as much as coal and requires a gas-turbine, boiler system for efficient energy use.

Todays ships and locomotives are far bigger than in the 1950s. The current standard is an engine output about 50 MW, or 170 MM Btu/hr of motive energy. Assuming a 50% efficient engine, the fuel use for a 50 MW ship or locomotive is 340 MM Btu/hr; locomotives only use this much when going up hill with a heavy load. Illinois coal costs, currently, about $60/ton, or $2.31/MM Btu. A 50 MW engine would consume about 13 tons of dry coal per hour costing $785/hr. By comparison, bunker oil costs about $3 /gallon, or $21/MM Btu. This is nearly ten times more than coal, or $ 7,140/hr for the same 50 MW output. Over 30 years of operation, the difference in fuel cost adds up to 1.5 billion dollars — about the cost of a modern container ship.

Robert E. Buxbaum, May 16, 2014. I possess a long-term interest in economics, thermodynamics, history, and the technology of the 1800s. See my steam-pump, and this page dedicated to Peter Cooper: Engineer, citizen of New York. Wood power isn’t all that bad, by the way, but as with coal, you must dry the wood, or (ideally) convert it to charcoal. You can improve the power and efficiency of diesel and automobile engines and reduce the pollution by adding hydrogen. Normal cars do not use steam because there is more start-stop, and because it takes too long to fire up the engine before one can drive. For cars, and drone airplanes, I suggest hydrogen/ fuel cells.

Ivanpah’s solar electric worse than trees

Recently the DoE committed 1.6 billion dollars to the completion of the last two of three solar-natural gas-electric plants on a 10 mi2 site at Lake Ivanpah in California. The site is rated to produce 370 MW of power, in a facility that uses far more land than nuclear power, at a cost significantly higher than nuclear. The 3900 MW Drax plant (UK) cost 1.1 Billion dollars, and produces 10 times more power on a much smaller site. Ivanpah needs a lot of land because its generators require 173,500 billboard-size, sun-tracking mirrors to heat boilers atop three 750 foot towers (2 1/2 times the statue of liberty). The boilers feed steam to low pressure, low efficiency (28% efficiency) Siemens turbines. At night, natural gas provides heat to make the steam, but only at the same, low efficiency. Siemens makes higher efficiency turbine plants (59% efficiency) but these can not be used here because the solar oven temperature is only 900°F (500°C), while normal Siemens plants operate at 3650°F (2000°C).

The Ivanpau thermal solar-natural gas project will look like The Crescent Dunes Thermal-solar project shown here, but will be bigger.

The first construction of the Ivanpah thermal solar-natural-gas project; Each circle mirrors extend out to cover about 2 square miles of the 10mi2 site.

So far, the first of the three towers is operational, but it has been producing at only 30% of rated low-efficiency output. These are described as “growing pains.” There are also problems with cooked birds, blinded pilots, and the occasional fire from the misaligned death ray — more pains, I guess. There is also the problem of lightning. When hit by lightning the mirrors shatter into millions of shards of glass over a 30 foot radius, according to Argus, the mirror cleaning company. This presents a less-than attractive environmental impact.

As an exercise, I thought I’d compare this site’s electric output to the amount one could generate using a wood-burning boiler fed by trees growing on a similar sized (10 sq. miles) site. Trees are cheap, but only about 10% efficient at converting solar power to chemical energy, thus you might imagine that trees could not match the power of the Ivanpah plant, but dry wood burns hot, at 1100 -1500°C, so the efficiency of a wood-powered steam turbine will be higher, about 45%. 

About 820 MW of sunlight falls on every 1 mi2 plot, or 8200 MW for the Ivanpah site. If trees convert 10% of this to chemical energy, and we convert 45% of that to electricity, we find the site will generate 369 MW of electric power, or exactly the output that Ivanpah is rated for. The cost of trees is far cheaper than mirrors, and electricity from wood burning is typically cost 4¢/kWh, and the environmental impact of tree farming is likely to be less than that of the solar mirrors mentioned above. 

There is another advantage to the high temperature of the wood fire. The use of high temperature turbines means that any power made at night with natural gas will be produced at higher efficiency. The Ivanpah turbines output at low temperature and low efficiency when burning natural gas (at night) and thus output half the half the power of a normal Siemens plant for every BTU of gas. Because of this, it seems that the Ivanpah plant may use as much natural gas to make its 370 MW during a 12 hour night as would a higher efficiency system operating 24 hours, day and night. The additional generation by solar thus, might be zero. 

If you think the problems here are with the particular design, I should also note that the Ivanpah solar project is just one of several our Obama-government is funding, and none are doing particularly well. As another example, the $1.45 B solar project on farmland near Gila Bend Arizona is rated to produce 35 MW, about 1/10 of the Ivanpah project at 2/3 the cost. It was built in 2010 and so far has not produced any power.

Robert E. Buxbaum, March 12, 2014. I’ve tried using wood to make green gasoline. No luck so far. And I’ve come to doubt the likelihood that we can stop global warming.