The energy cost of airplanes, trains, and buses

I’ve come to conclude that airplane travel, and busses makes a lot more sense than high-speed trains. Consider the marginal energy cost of a 90kg (200 lb) person getting on a 737-800, the most commonly flown commercial jet in US service. For this plane, the ratio of lift/drag at cruise speed is 19, suggesting an average value of 15 or so for a 1 hr trip when you include take-off and landing. The energy cost of his trip is related to the cost of jet fuel, about \$3.20/gallon, or about \$1/kg. The heat energy content of jet fuel is 44 MJ/kg or 18,800 Btu/lb. Assuming an average engine efficiency of 21%, we calculate a motive-energy cost of 1.1 x 10-7 \$/J, or 40¢/kwhr. The amount of energy per mile is just force times distance: 1 mile = 1609 m. Force is calculated from the person’s weight in (in Newtons) divided by lift/drag ratio. The energy per mile is thus 90*9.8*1609/15 = 94,600 J. Multiplying by the \$-per-J we find the marginal cost of his transport is 1¢ per mile, virtually nothing.

The Wright brothers testing their gliders in 1901 (left) and 1902 (right). The angle of the tether reflects a dramatic improvement in lift-to-drag ratio; the marginal cost per mile is inversely proportional to the lift-to-drag ratio.

The marginal cost for carrying a 200 lb person from Detroit to NY (500 miles) is 1¢/mile x 500 miles = \$5: hardly anything compared to the cost of driving. No wonder airplanes offer crazy-low, fares to fill seats on empty flights. But this is just the marginal cost. The average energy cost per passenger is higher since it includes the weight of the plane. On a reasonably full 737 flight, the passengers and luggage  weigh about 1/4 as much as the plane and its fuel. Effectively, each passenger weighs 800 lbs, suggesting a 4¢/mile energy cost, or \$20 of energy per passenger for the flight from Detroit to NY. Though the fuel rate of burn is high, about 5000 lbs/hr, the cost is low because of the high speed and the number of passengers. Stated another way, the 737 gets 80 passenger miles per gallon, a somewhat lower mpg than the 91 claimed for a full 747.

Passengers must pay more than \$20, of course because of wages, capital, interest, profit, taxes, and landing fees. Still, one can see how discount airlines could make money if they arrange a good deal with a hub airport, one that allows them low landing fees and allows them to buy fuel at near cost.

Compare this to any proposed super-fast or Mag-lev train. Over any significant distance, the plane will be cheaper, faster, and as energy-efficient. Current US passenger trains, when fairly full, boast a fuel economy of 200 passenger miles per gallon, but they are rarely full. Currently, they take some 15 hours to go Detroit to NY, in part because they go slow, and in part because they go via longer routes, visiting Toronto and Montreal in this case, with many stops along the way. With this long route, even if the train got 200 passenger mpg, the 750 mile trip would use 3.75 gallons per passenger, compared to 6.25 for the flight above. This is a savings of 2.5 gallons, or \$8, but it comes at a cost of 15 hours of a passenger’s life. Even train speeds were doubled, the trip would still take more than 7.5 hours including stops, and the energy cost would be higher. As for price, beyond the costs of wages, capital, interest, profit, taxes, and depot fees — similar to those for air-tragic – you have to add the cost of new track and track upkeep. While I’d be happy to see better train signaling to allow passenger trains to go 100 mph on current, freight-compatible lines, I can see little benefit to government-funded projects to add the parallel, dedicated track for 150+ mph trains that will still, likely be half-full.

You may now ask about cities that don’t have  good airports. Something else removing my enthusiasm for super trains is the appearance of a new generation of short take-off and landing, commercial jets, and of a new generation of comfortable buses. Some years ago, I noted that Detroit’s Coleman Young airport no longer has commercial traffic because its runway was too short, 1051m. I’m happy to report that Bombardier’s new CS100s should make small airports like this usable. A CS100 will hold 120 passengers, requires only 1463m of runway, and is quiet enough for city use. The economics are such that it’s hard to imagine Mag-lev beating this for the proposed US high-speed train routes: Dallas to Houston; LA to San José to San Francisco; or Chicago-Detroit-Toledo-Cleveland-Pittsburgh. So far US has kept out these planes because Boeing claims unfair competition, but I trust that this is just a delay. As for shorter trips, the modern busses are as fast and energy efficient as trains, and far cheaper because they share the road costs with cars and trucks.

If the US does want to spend money on transport, I’d suggest improving inner-city airports. The US could also fund development of yet-better short take off planes, perhaps made with carbon fiber, or with flexible wing structures to improve the lift-to-drag during take-offs and landings. Higher train speeds should be available with better signaling and with passenger trains that lean more into a curve, but even this does not have to be super high-tech. And for 100-200 mile intercity traffic, I suspect the best solution is to improve the highways and busses. If you want low pollution and high efficiency, how about hydrogen hybrid buses?

Robert Buxbaum, October 30, 2017. I taught engineering for 10 years at Michigan State, and my company, REB Research, makes hydrogen generators and hydrogen purifiers.

Highest temperature superconductor so far: H2S

The new champion of high-temperature superconductivity is a fairly common gas, hydrogen sulphide, H2S. By compressing it to 150 GPa, 1.5 million atm., a team lead by Alexander Drozdov and M. Eremets of the Max Planck Institute coaxed superconductivity from H2S at temperatures as high as 203.5°K (-70°C). This is, by far, the warmest temperature of any superconductor discovered to-date, and it’s main significance is to open the door for finding superconductivity in other, related hydrogen compounds — ideally at warmer temperatures and/or less-difficult pressures. Among the interesting compounds that will certainly get more attention: PH3, BH3, Methyl mercaptan, and even water, either alone or in combination with H2S.

Relation between pressure and critical temperature for superconductivity, Tc, in H2S (filled squares) and D2S (open red). The magenta point was measured by magnetic susceptibility (Nature)

H2S superconductivity appears to follow the standard, Bardeen–Cooper–Schrieffer theory (B-C-S). According to this theory superconductivity derives from the formation of pairs of opposite-spinning electrons (Cooper pairs) particularly in light, stiff, semiconductor materials. The light, positively charged lattice quickly moves inward to follow the motion of the electrons, see figure below. This synchronicity of motion is posited to create an effective bond between the electrons, enough to counter the natural repulsion, and allows the the pairs to condense to a low-energy quantum state where they behave as if they were very large and very spread out. In this large, spread out state, they slide through the lattice without interacting with the atoms or the few local vibrations and unpaired electrons found at low temperatures. From this theory, we would expect to find the highest temperature superconductivity in the lightest lattice, materials like ice, boron hydride, magnesium hydride, or H2S, and we expect to find higher temperature behavior in the hydrogen version, H2O, or H2S than in the heavier, deuterium analogs, D2O or D2S. Experiments with H2S and D2S (shown at right) confirm this expectation suggesting that H2S superconductivity is of the B-C-S type. Sorry to say, water has not shown any comparable superconductivity in experiments to date.

We have found high temperature superconductivity in few of materials that we would expect from B-C-S theory, and yet-higher temperature is seen in many unexpected materials. While hydride materials generally do become superconducting, they mostly do so only at low temperatures. The highest temperature semiconductor B-C-S semiconductor discovered until now was magnesium boride, Tc = 27 K. More bothersome, the most-used superconductor, Nb-Sn, and the world record holder until now, copper-oxide ceramics, Tc = 133 K at ambient pressure; 164 K at 35 GPa (350,000 atm) were not B-C-S. There is no version of B-C-S theory to explain why these materials behave as well as they do, or why pressure effects Tc in them. Pressure effects Tc in B-C-S materials by raising the energy of small-scale vibrations that would be necessary to break the pairs. Why should pressure effect copper ceramics? No one knows.

The standard theory of superconductivity relies on Cooper pairs of electrons held together by lattice elasticity. The lighter and stiffer the lattice, the higher temperature the superconductivity.

The assumption is that high-pressure H2S acts as a sort of metallic hydrogen. From B-C-S theory, metallic hydrogen was predicted to be a room-temperature superconductor because the material would likely to be a semi-metal, and thus a semiconductor at all temperatures. Hydrogen’s low atomic weight would mean that there would be no significant localized vibrations even at room temperature, suggesting room temperature superconductivity. Sorry to say, we have yet to reach the astronomical pressures necessary to make metallic hydrogen, so we don’t know if this prediction is true. But now it seems H2S behaves nearly the same without requiring the extremely high pressures. It is thought that high temperature H2S superconductivity occurs because H2S somewhat decomposes to H3S and S, and that the H3S provides a metallic-hydrogen-like operative lattice. The sulfur, it’s thought, just goes along for the ride. If this is the explanation, we might hope to find the same behaviors in water or phosphine, PH3, perhaps when mixed with H2S.

One last issue, I guess, is what is this high temperature superconductivity good for. As far as H2S superconductivity goes, the simple answer is that it’s probably good for nothing. The pressures are too high. In general though, high temperature superconductors like NbSn are important. They have been valuable for making high strength magnets, and for prosaic applications like long distance power transmission. The big magnets are used for submarine hunting, nuclear fusion, and (potentially) for levitation trains. See my essay on Fusion here, it’s what I did my PhD on — in chemical engineering, and levitation trains, potentially, will revolutionize transport.

Robert Buxbaum, December 24, 2015. My company, REB Research, does a lot with hydrogen. Not that we make superconductors, but we make hydrogen generators and purifiers, and I try to keep up with the relevant hydrogen research.

my electric cart of the future

Buxbaum and Sperka show off the (shopping) cart of future, Oak Park parade July 4, 2015.

A Roman chariot did quite well with only 1 horse-power, while the average US car requires 100 horses. Part of the problem is that our cars weigh more than a chariot and go faster, 80 mph vs of 25 mph. But most city applications don’t need all that weight nor all of that speed. 20-25 mph is fine for round-town errands, and should be particularly suited to use by young drivers and seniors.

To show what can be done with a light vehicle that only has to go 20 mph, I made this modified shopping cart, and fitted it with a small, 1 hp motor. I call it the cart-of the future and paraded around with it at our last 4th of July parade. It’s high off the ground for safety, reasonably wide for stability, and has the shopping cart cage and seat-belts for safety. There is also speed control. We went pretty slow in the parade, but here’s a link to a video of the cart zipping down the street at 17.5 mph.

In the 2 months since this picture was taken, I’ve modified the cart to have a chain drive and a rear-wheel differential — helpful for turning. My next modification, if I get to it, will be to switch to hydrogen power via a fuel cell. One of the main products we make is hydrogen generators, and I’m hoping to use the cart to advertise the advantages of hydrogen power.

Robert E. Buxbaum, August 28, 2015. I’m the one in the beige suit.

My latest invention: improved fuel cell reformer

Last week, I submitted a provisional patent application for an improved fuel reformer system to allow a fuel cell to operate on ordinary, liquid fuels, e.g. alcohol, gasoline, and JP-8 (diesel). I’m attaching the complete text of the description, below, but since it is not particularly user-friendly, I’d like to add a small, explanatory preface. What I’m proposing is shown in the diagram, following. I send a hydrogen-rich stream plus ordinary fuel and steam to the fuel cell, perhaps with a pre-reformer. My expectation that the fuel cell will not completely convert this material to CO2 and water vapor, even with the pre-reformer. Following the fuel cell, I then use a water-gas shift reactor to convert product CO and H2O to H2 and CO2 to increase the hydrogen content of the stream. I then use a semi-permeable membrane to extract the waste CO2 and water. I recirculate the hydrogen and the rest of the water back to the fuel cell to generate extra power, prevent coking, and promote steam reforming. I calculate the design should be able to operate at, perhaps 0.9 Volt per cell, and should nearly double the energy per gallon of fuel compared to ordinary diesel. Though use of pure hydrogen fuel would give better mileage, this design seems better for some applications. Please find the text following.

Use of a Water-Gas shift reactor and a CO2 extraction membrane to improve fuel utilization in a solid oxide fuel cell system.

Inventor: Dr. Robert E. Buxbaum, REB Research, 12851 Capital St, Oak Park, MI 48237; Patent Pending.

Solid oxide fuel cells (SOFCs) have improved over the last 10 years to the point that they are attractive options for electric power generation in automobiles, airplanes, and auxiliary power supplies. These cells operate at high temperatures and tolerate high concentrations of CO, hydrocarbons and limited concentrations of sulfur (H2S). SOFCs can operate on reformate gas and can perform limited degrees of hydrocarbon reforming too – something that is advantageous from the stand-point of fuel logistics: it’s far easier to transport a small volume of liquid fuel that it is a large volume of H2 gas. The main problem with in-situ reforming is the danger of coking the fuel cell, a problem that gets worse when reforming is attempted with the more–desirable, heavier fuels like gasoline and JP-8. To avoid coking the fuel cell, heavier fuels are typically reforming before hand in a separate reactor, typically by partial oxidation at auto-thermal conditions, a process that typically adds nitrogen and results in the inability to use the natural heat given off by the fuel cell. Steam reforming has been suggested as an option (Chick, 2011) but there is not enough heat released by the fuel cell alone to do it with the normal fuel cycles.

Another source of inefficiency in reformate-powered SOFC systems is basic to the use of carbon-containing fuels: the carbon tends to leave the fuel cell as CO instead of CO2. CO in the exhaust is undesirable from two perspectives: CO is toxic, and quite a bit of energy is wasted when the carbon leaves in this form. Normally, carbon can not leave as CO2 though, since CO is the more stable form at the high temperatures typical of SOFC operation. This patent provides solutions to all these problems through the use of a water-gas shift reactor and a CO2-extraction membrane. Find a drawing of a version of the process following.

RE. Buxbaum invention: A suggested fuel cycle to allow improved fuel reforming with a solid oxide fuel cell

As depicted in Figure 1, above, the fuel enters, is mixed with steam or partially boiled water, and heated in the rectifying heat exchanger. The hot steam + fuel mix then enters a steam reformer and perhaps a sulfur removal stage. This would be typical steam reforming except for a key difference: the heat for reforming comes (at least in part) from waste heat of the SOFC. Normally speaking there would not be enough heat, but in this system we add a recycle stream of H2-rich gas to the fuel cell. This stream, produced from waste CO in a water-gas shift reactor (the WGS) shown in Figure 1. This additional H2 adds to the heat generated by the SOFC and also adds to the amount of water in the SOFC. The net effect should be to reduce coking in the fuel cell while increasing the output voltage and providing enough heat for steam reforming. At least, that is the thought.

SOFCs differ from proton conducting FCS, e.g. PEM FCs, in that the ion that moves is oxygen, not hydrogen. As a result, water produced in the fuel cell ends up in the hydrogen-rich stream and not in the oxygen stream. Having this additional water in the fuel stream of the SOFC can promote fuel reforming within the FC. This presents a difficulty in exhausting the waste water vapor in that a means must be found to separate it from un-combusted fuel. This is unlike the case with PEM FCs, where the waste water leaves with the exhaust air. Our main solution to exhausting the water is the use of a membrane and perhaps a knockout drum to extract it from un-combusted fuel gases.

Our solution to the problem of carbon leaving the SOFC as CO is to react this CO with waste H2O to convert it to CO2 and additional H2. This is done in a water gas shift reactor, the WGS above. We then extract the CO2 and remaining, unused water through a CO2- specific membrane and we recycle the H2 and unconverted CO back to the SOFC using a low temperature recycle blower. The design above was modified from one in a paper by PNNL; that paper had neither a WGS reactor nor a membrane. As a result it got much worse fuel conversion, and required a high temperature recycle blower.

Heat must be removed from the SOFC output to cool it to a temperature suitable for the WGS reactor. In the design shown, the heat is used to heat the fuel before feeding it to the SOFC – this is done in the Rectifying HX. More heat must be removed before the gas can go to the CO2 extractor membrane; this heat is used to boil water for the steam reforming reaction. Additional heat inputs and exhausts will be needed for startup and load tracking. A solution to temporary heat imbalances is to adjust the voltage at the SOFC. The lower the voltage the more heat will be available to radiate to the steam reformer. At steady state operation, a heat balance suggests we will be able to provide sufficient heat to the steam reformer if we produce electricity at between 0.9 and 1.0 Volts per cell. The WGS reactor allows us to convert virtually all the fuel to water and CO2, with hardly any CO output. This was not possible for any design in the PNNL study cited above.

The drawing above shows water recycle. This is not a necessary part of the cycle. What is necessary is some degree of cooling of the WGS output. Boiling recycle water is shown because it can be a logistic benefit in certain situations, e.g. where you can not remove the necessary CO2 without removing too much of the water in the membrane module, and in mobile military situations, where it’s a benefit to reduce the amount of material that must be carried. If water or fuel must be boiled, it is worthwhile to do so by cooling the output from the WGS reactor. Using this heat saves energy and helps protect the high-selectivity membranes. Cooling also extends the life of the recycle blower and allows the lower-temperature recycle blowers. Ideally the temperature is not lowered so much that water begins to condense. Condensed water tends to disturb gas flow through a membrane module. The gas temperatures necessary to keep water from condensing in the module is about 180°C given typical, expected operating pressures of about 10 atm. The alternative is the use of a water knockout and a pressure reducer to prevent water condensation in membranes operated at lower temperatures, about 50°C.

Extracting the water in a knockout drum separate from the CO2 extraction has the secondary advantage of making it easier to adjust the water content in the fuel-gas stream. The temperature of condensation can then be used to control the water content; alternately, a separate membrane can extract water ahead of the CO2, with water content controlled by adjusting the pressure of the liquid water in the exit stream.

Some description of the membrane is worthwhile at this point since a key aspect of this patent – perhaps the key aspect — is the use of a CO2-extraction membrane. It is this addition to the fuel cycle that allows us to use the WGS reactor effectively to reduce coking and increase efficiency. The first reasonably effective CO2 extraction membranes appeared only about 5 years ago. These are made of silicone polymers like dimethylsiloxane, e.g. the Polaris membrane from MTR Inc. We can hope that better membranes will be developed in the following years, but the Polaris membrane is a reasonably acceptable option and available today, its only major shortcoming being its low operating temperature, about 50°C. Current Polaris membranes show H2-CO2 selectivity about 30 and a CO2 permeance about 1000 Barrers; these permeances suggest that high operating pressures would be desirable, and the preferred operation pressure could be 300 psi (20 atm) or higher. To operate the membrane with a humid gas stream at high pressure and 50°C will require the removal of most of the water upstream of the membrane module. For this, I’ve included a water knockout, or steam trap, shown in Figure 1. I also include a pressure reduction valve before the membrane (shown as an X in Figure 1). The pressure reduction helps prevent water condensation in the membrane modules. Better membranes may be able to operate at higher temperatures where this type of water knockout is not needed.

It seems likely that, no matter what improvements in membrane technology, the membrane will have to operate at pressures above about 6 atm, and likely above about 10 atm (upstream pressure) exhausting CO2 and water vapor to atmosphere. These high pressures are needed because the CO2 partial pressure in the fuel gas leaving the membrane module will have to be significantly higher than the CO2 exhaust pressure. Assuming a CO2 exhaust pressure of 0.7 atm or above and a desired 15% CO2 mol fraction in the fuel gas recycle, we can expect to need a minimum operating pressure of 4.7 atm at the membrane. Higher pressures, like 10 or 20 atm could be even more attractive.

In order to reform a carbon-based fuel, I expect the fuel cell to have to operate at 800°C or higher (Chick, 2011). Most fuels require high temperatures like this for reforming –methanol being a notable exception requiring only modest temperatures. If methanol is the fuel we will still want a rectifying heat exchanger, but it will be possible to put it after the Water-Gas Shift reactor, and it may be desirable for the reformer of this fuel to follow the fuel cell. When reforming sulfur-containing fuels, it is likely that a sulfur removal reactor will be needed. Several designs are available for this; I provide references to two below.

The overall system design I suggest should produce significantly more power per gm of carbon-based feed than the PNNL system (Chick, 2011). The combination of a rectifying heat exchange, a water gas reactor and CO2 extraction membrane recovers chemical energy that would otherwise be lost with the CO and H2 bleed steam. Further, the cooling stage allows the use of a lower temperature recycle pump with a fairly low compression ratio, likely 2 or less. The net result is to lower the pump cost and power drain. The fuel stream, shown in orange, is reheated without the use of a combustion pre-heater, another big advantage. While PNNL (Chick, 2011) has suggested an alternative route to recover most of the chemical energy through the use of a turbine power generator following the fuel cell, this design should have several advantages including greater reliability, and less noise.

Claims:

1.   A power-producing, fuel cell system including a solid oxide fuel cell (SOFC) where a fuel-containing output stream from the fuel cell goes to a regenerative heat exchanger followed by a water gas shift reactor followed by a membrane means to extract waste gases including carbon dioxide (CO2) formed in said reactor. Said reactor operating a temperatures between 200 and 450°C and the extracted carbon dioxide leaving at near ambient pressure; the non-extracted gases being recycled to the fuel cell.

Main References:

The most relevant reference here is “Solid Oxide Fuel Cell and Power System Development at PNNL” by Larry Chick, Pacific Northwest National Laboratory March 29, 2011: http://www.energy.gov/sites/prod/files/2014/03/f10/apu2011_9_chick.pdf. Also see US patent  8394544. it’s from the same authors and somewhat similar, though not as good and only for methane, a high-hydrogen fuel.

Robert E. Buxbaum, REB Research, May 11, 2015.

No need to conserve energy

Energy conservation stamp from the early 70s

I’m reminded that one of the major ideas of Earth Day, energy conservation, is completely unnecessary: Energy is always conserved. It’s entropy that needs to be conserved.

The entropy of the universe increases for any process that occurs, for any process that you can make occur, and for any part of any process. While some parts of processes are very efficient in themselves, they are always entropy generators when considered on a global scale. Entropy is the arrow of time: if entropy ever goes backward, time has reversed.

A thought I’ve had on how do you might conserve entropy: grow trees and use them for building materials, or convert them to gasoline, or just burn them for power. Under ideal conditions, photosynthesis is about 30% efficient at converting photon-energy to glucose. (photons + CO2 + water –> glucose + O2). This would be nearly same energy conversion efficiency as solar cells if not for the energy the plant uses to live. But solar cells have inefficiency issues of their own, and as a result the land use per power is about the same. And it’s a lot easier to grow a tree and dispose of forest waste than it is to make a solar cell and dispose of used coated glass and broken electric components. Just some Earth Day thoughts from Robert E. Buxbaum. April 24, 2015

In praise of openable windows and leaky construction

It’s summer in Detroit, and in all the tall buildings the air conditioners are humming. They have to run at near-full power even on evenings and weekends when the buildings are near empty, and on cool days. This would seem to waste a lot of power and it does, but it’s needed for ventilation. Tall buildings are made air-tight with windows that don’t open — without the AC, there’s be no heat leaving at all, no way for air to get in, and no way for smells to get out.

The windows don’t open because of the conceit of modern architecture; air tight building are believed to be good design because they have improved air-conditioner efficiency when the buildings are full, and use less heat when the outside world is very cold. That’s, perhaps 10% of the year.

Modern architecture with no openable windows. Someone wants you to suffer for his/her art.

Another reason closed buildings are popular is that they reduce the owners’ liability in terms of things flying in or falling out. Owners don’t rain coming in, or rocks (or people) falling out. Not that windows can’t be made with small openings that angle to avoid these problems, but that’s work and money and architects like to spend time and money only on fancy facades that look nice (and are often impractical). Besides, open windows can ruin the cool lines of their modern designs, and there’s nothing worse, to them, than a building that looks uncool despite the energy cost or the suffering of the inmates of their art.

Most workers find sealed buildings claustrophobic, musty, and isolating. That pain leads to lost productivity: Fast Company reported that natural ventilation can increase productivity by up to 11 percent. But, as with leading clothes stylists, leading building designers prefer uncomfortable and uneconomic to uncool. If people in the building can’t smell an ocean breeze, or can’t vent their area in a fire (or following a burnt burrito), that’s a small price to pay for art. Art is absurd, and it’s OK with the architect if fire fumes have to circulate through the entire building before they’re slowly vented. Smells add character, and the architect is gone before the stench gets really bad.

No one dreams of working in a glass box. If it’s got to be an office, give some ventilation.

So what’s to be done? One can demand openable windows and hope the architect begrudgingly obliges. Some of the newest buildings have gone this route. A simpler, engineering option is to go for leaky construction — cracks in the masonry, windows that don’t quite seal. I’ve maintained and enlarged the gap under the doors of my laboratory buildings to increase air leakage; I like to have passive venting for toxic or flammable vapors. I’m happy to not worry about air circulation failing at the worst moment, and I’m happy to not have to ventilate at night when few people are here. To save some money, I increase the temperature range at night and weekends so that the buildings is allowed to get as hot as 82°F before the AC goes on, or as cold as 55°F without the heat. Folks who show up on weekends may need a sweater, but normally no one is here.

A bit of air leakage and a few openable windows won’t mess up the air-conditioning control because most heat loss is through the walls and black body radiation. And what you lose in heat infiltration you gain by being able to turn off the AC circulation system when you know there are few people in the building (It helps to have a key-entry system to tell you how many people are there) and the productivity advantage of occasional outdoor smells coming in, or nasty indoor smells going out.

One irrational fear of openable windows is that some people will not close the windows in the summer or in the dead of winter. But people are quite happy in the older skyscrapers (like the empire state building) built before universal AC. Most people are nice — or most people you’d want to employ are. They will respond to others feelings to keep everyone comfortable. If necessary a boss or building manager may enforce this, or may have to move a particularly crusty miscreant from the window. But most people are nice, and even a degree of discomfort is worth the boost to your psyche when someone in management trusts you to control something of the building environment.

Robert E. Buxbaum, July 18, 2014. Curtains are a plus too — far better than self-darkening glass. They save energy, and let you think that management trusts you to have power over your environment. And that’s nice.

The future of steamships: steam

Most large ships and virtually all locomotives currently run on diesel power. But the diesel  engine does not drive the wheels or propeller directly; the transmission would be too big and complex. Instead, the diesel engine is used to generate electric power, and the electric power drives the ship or train via an electric motor, generally with a battery bank to provide a buffer. Current diesel generators operate at 75-300 rpm and about 40-50% efficiency (not bad), but diesel fuel is expensive. It strikes me, therefore that the next step is to switch to a cheaper fuel like coal or compressed natural gas, and convert these fuels to electricity by a partial or full steam cycle as used in land-based electric power plants

Diesel engine, 100 MW for a large container ship

Steam powers all nuclear ships, and conventionally boiled steam provided the power for thousands of Liberty ships and hundreds of aircraft carriers during World War 2. Advanced steam turbine cycles are somewhat more efficient, pushing 60% efficiency for high pressure, condensed-turbine cycles that consume vaporized fuel in a gas turbine and recover the waste heat with a steam boiler exhausting to vacuum. The higher efficiency of these gas/steam turbine engines means that, even for ships that burn ship-diesel fuel (so-called bunker oil) or natural gas, there can be a cost advantage to having a degree of steam power. There are a dozen or so steam-powered ships operating on the great lakes currently. These are mostly 700-800 feet long, and operate with 1950s era steam turbines, burning bunker oil or asphalt. US Steel runs the “Arthur M Anderson”, Carson J Callaway” , “John G Munson” and “Philip R Clarke”, all built-in 1951/2. The “Upper Lakes Group” runs the “Canadian Leader”, “Canadian Provider”, “Quebecois”, and “Montrealais.” And then there is the coal-fired “Badger”. Built in 1952, the Badger is powered by two, “Skinner UniFlow” double-acting, piston engines operating at 450 psi. The Badger is cost-effective, with the low-cost of the fuel making up for the low efficiency of the 50’s technology. With larger ships, more modern boilers and turbines, and with higher pressure boilers and turbines, the economics of steam power would be far better, even for ships with modern pollution abatement.

Nuclear steam boilers can be very compact

Steam powered ships can burn fuels that diesel engines can’t: coal, asphalts, or even dry wood because fuel combustion can be external to the high pressure region. Steam engines can cost more than diesel engines do, but lower fuel cost can make up for that, and the cost differences get smaller as the outputs get larger. Currently, coal costs 1/10 as much as bunker oil on a per-energy basis, and natural gas costs about 1/5 as much as bunker oil. One can burn coal cleanly and safely if the coal is dried before being loaded on the ship. Before burning, the coal would be powdered and gassified to town-gas (CO + H2O) before being burnt. The drying process removes much of the toxic impact of the coal by removing much of the mercury and toxic oxides. Gasification before combustion further reduces these problems, and reduces the tendency to form adhesions on boiler pipes — a bane of old-fashioned steam power. Natural gas requires no pretreatment, but costs twice as much as coal and requires a gas-turbine, boiler system for efficient energy use.

Todays ships and locomotives are far bigger than in the 1950s. The current standard is an engine output about 50 MW, or 170 MM Btu/hr of motive energy. Assuming a 50% efficient engine, the fuel use for a 50 MW ship or locomotive is 340 MM Btu/hr; locomotives only use this much when going up hill with a heavy load. Illinois coal costs, currently, about \$60/ton, or \$2.31/MM Btu. A 50 MW engine would consume about 13 tons of dry coal per hour costing \$785/hr. By comparison, bunker oil costs about \$3 /gallon, or \$21/MM Btu. This is nearly ten times more than coal, or \$ 7,140/hr for the same 50 MW output. Over 30 years of operation, the difference in fuel cost adds up to 1.5 billion dollars — about the cost of a modern container ship.

Robert E. Buxbaum, May 16, 2014. I possess a long-term interest in economics, thermodynamics, history, and the technology of the 1800s. See my steam-pump, and this page dedicated to Peter Cooper: Engineer, citizen of New York. Wood power isn’t all that bad, by the way, but as with coal, you must dry the wood, or (ideally) convert it to charcoal. You can improve the power and efficiency of diesel and automobile engines and reduce the pollution by adding hydrogen. Normal cars do not use steam because there is more start-stop, and because it takes too long to fire up the engine before one can drive. For cars, and drone airplanes, I suggest hydrogen/ fuel cells.

Ivanpah’s solar electric worse than trees

Recently the DoE committed 1.6 billion dollars to the completion of the last two of three solar-natural gas-electric plants on a 10 mi2 site at Lake Ivanpah in California. The site is rated to produce 370 MW of power, in a facility that uses far more land than nuclear power, at a cost significantly higher than nuclear. The 3900 MW Drax plant (UK) cost 1.1 Billion dollars, and produces 10 times more power on a much smaller site. Ivanpah needs a lot of land because its generators require 173,500 billboard-size, sun-tracking mirrors to heat boilers atop three 750 foot towers (2 1/2 times the statue of liberty). The boilers feed steam to low pressure, low efficiency (28% efficiency) Siemens turbines. At night, natural gas provides heat to make the steam, but only at the same, low efficiency. Siemens makes higher efficiency turbine plants (59% efficiency) but these can not be used here because the solar oven temperature is only 900°F (500°C), while normal Siemens plants operate at 3650°F (2000°C).

The first construction of the Ivanpah thermal solar-natural-gas project; Each circle mirrors extend out to cover about 2 square miles of the 10mi2 site.

So far, the first of the three towers is operational, but it has been producing at only 30% of rated low-efficiency output. These are described as “growing pains.” There are also problems with cooked birds, blinded pilots, and the occasional fire from the misaligned death ray — more pains, I guess. There is also the problem of lightning. When hit by lightning the mirrors shatter into millions of shards of glass over a 30 foot radius, according to Argus, the mirror cleaning company. This presents a less-than attractive environmental impact.

As an exercise, I thought I’d compare this site’s electric output to the amount one could generate using a wood-burning boiler fed by trees growing on a similar sized (10 sq. miles) site. Trees are cheap, but only about 10% efficient at converting solar power to chemical energy, thus you might imagine that trees could not match the power of the Ivanpah plant, but dry wood burns hot, at 1100 -1500°C, so the efficiency of a wood-powered steam turbine will be higher, about 45%.

About 820 MW of sunlight falls on every 1 mi2 plot, or 8200 MW for the Ivanpah site. If trees convert 10% of this to chemical energy, and we convert 45% of that to electricity, we find the site will generate 369 MW of electric power, or exactly the output that Ivanpah is rated for. The cost of trees is far cheaper than mirrors, and electricity from wood burning is typically cost 4¢/kWh, and the environmental impact of tree farming is likely to be less than that of the solar mirrors mentioned above.

There is another advantage to the high temperature of the wood fire. The use of high temperature turbines means that any power made at night with natural gas will be produced at higher efficiency. The Ivanpah turbines output at low temperature and low efficiency when burning natural gas (at night) and thus output half the half the power of a normal Siemens plant for every BTU of gas. Because of this, it seems that the Ivanpah plant may use as much natural gas to make its 370 MW during a 12 hour night as would a higher efficiency system operating 24 hours, day and night. The additional generation by solar thus, might be zero.

If you think the problems here are with the particular design, I should also note that the Ivanpah solar project is just one of several our Obama-government is funding, and none are doing particularly well. As another example, the \$1.45 B solar project on farmland near Gila Bend Arizona is rated to produce 35 MW, about 1/10 of the Ivanpah project at 2/3 the cost. It was built in 2010 and so far has not produced any power.

Robert E. Buxbaum, March 12, 2014. I’ve tried using wood to make green gasoline. No luck so far. And I’ve come to doubt the likelihood that we can stop global warming.

Land use nuclear vs wind and solar

An advantage of nuclear power over solar and wind is that it uses a lot less land, see graphic below. While I am doubtful that industrial gas causes global warming, I am not a fan of pollution, and that’s why I like nuclear power. Nuclear power adds no water or air pollution when it runs right, and removes a lot less land than wind and solar. Consider the newly approved Hinkley Point C (England), see graphic below. The site covers 430 acres, 1.74 km2, and is currently the home of Hinkley Point B, a nuclear plant slated for retirement. When Hinkley Point C is built on the same site, it will add 26 trillion Watt-hr/ year (3200 MW, 93% up time), about 7% of the total UK demand. Yet more power would be provided from these 430 acres if Hinkley B is not shut down.

Nuclear land use vs solar and wind; British Gov’t. regarding their latest plant

A solar farm to produce 26 trillion W-hr/year would require 130,000 acres, 526 km2. This area would suggest they get the equivalent of 1.36 hours per day of full sun on every m2, not unreasonable given the space for roads and energy storage, and how cloudy England is. Solar power requires a lot energy-storage since you only get full power in the daytime, when there are no clouds.

A wind farm requires even more land than solar, 250,000 acres, or somewhat more than 1000 km2. Wind farms require less storage but that the turbines be spaced at a distance. Storage options could include hydrogen, batteries, and pumped hydro.; I make the case that hydrogen is better. While wind-farm space can be dual use — allowing farming for example, 1000 square km, is still a lot of space to carve up with roads and turbines. It’s nearly the size of greater London; the tourist area, London city is only 2.9 km2.

All these power sources produce pollution during construction and decommissioning. But nuclear produces somewhat less as the plants are less massive in total, and work for more years without the need for major rebuilds. Hinkley C will generate about 30,000 kg/year of waste assuming 35 MW-days/kg, but the cost to bury it in salt domes should not be excessive. Salt domes are needed because Hinkley waste will generate 100 kW of after-heat, even 16 years out. Nuclear fusion, when it comes, should produce 1/10,000 as much after-heat, 100W, 1 year out, but fusion isn’t here yet.

There is also the problem of accidents. In the worst nuclear disaster, Chernobyl, only 31 people died as a direct result, and now (strange to say) the people downwind are healthier than the average up wind; it seems that small amounts of radiation may be good for you. By comparison, in Iowa alone there were 317 driving fatalities in 2013. And even wind and solar have accidents, e.g. people falling from wind-turbines.

Robert Buxbaum, January 22, 2014. I’m president of REB Research, a manufacturer of hydrogen generators and purifiers — mostly membrane reactor based. I also do contract research, mostly on hydrogen, and I write this blog. My PhD research was on nuclear fusion power. I’ve also written about conservation, e.g. curtainsinsulation; paint your roof white.

My failed process for wood to green gasoline

Most researchers publish the results of their successful projects, and ignore the rest. It’s an understandable failing given the cost and work to publish and the general sense that the project that flops indicated a loser – researcher. Still, it’s a shame, and I’d like to break from it here to describe a worthwhile project of mine that failed — turning wood into green gasoline. You may come to believe the project worthwhile too, and figure that you might learn from my story some pathways to avoid if you decide to try it. Besides I figure that it’s an interesting tale. All success stories are similar, I find; failure can come in many ways.

Failure can come from incorrect thinking – assumptions that are wrong. One basis of my thinking was the observation that gasoline, for the most part, was crude-oil that had been fluffed up with hydrogen. The density you buy weighs about 5.5 lb/gallon while crude oil weighs 9 lb/gallon. The difference is hydrogen. Perhaps wood too could be turned into gasoline if hydrogen were added. Another insight was that the structure of wood was the structure of a long chain -alcohol,  —(CHOH)-(CHOH)-(CHOH)—. My company had long experience breaking alcohols to make hydrogen. I figured we could do something similar with wood, fluffing up the wood by breaking the long-chain alcohols to short ones.

A possible first reaction step would be to break a C-O-C bond, a ketone bond, with hydrogen:

—(CHOH)-(CH2O)-(CHOH)— + H2 –>  —(CHOH)-CH2OH + CH2OH—

The next reaction step, I imagined was de-oxygenation:

—(CHOH)-CH2OH  +  H2 –>  —(CHOH)-CH3  + H2O

At this point, we are well on the way to making gasoline, or making a gasoline-relevant alcohol like C6H11-OH. The reactions I wanted were exothermic, meaning they would probably “go” — in actuality -∆G is the determinate of reaction favorability, but usually a -∆H and -∆G go together. Of course there are other reactions that I could have worried about –Ones that produce nasty goop. Among these:

–(CHOH)-(CH2O)-(CHOH)—  –> –(CO)-(C)-(CHOH)— + H2O +H2

I didn’t worry about these reactions because I figured I could outrun them using the right combination of a high hydrogen pressure, the right (low) temperature and the right catalyst. I may have been wrong. Then again, perhaps I picked the wrong catalyst – Fe2O3/ rust, or the wrong set of conditions. I picked Fe2O3 because it was cheap and active.

I convinced myself that Fe2O3 was sufficiently specific to get the product to a good 5-6 carbon compounds for gasoline. Wood celluloses are composed of five and six-carbon ring structure, and the cost of wood is very low per energy. What could go wrong? I figured that starting with these 5-6 carbon ring structures, virtually guaranteed getting high octane products. With the low cost and all the heat energy of the wood, wood + H2 seemed like a winning way to store and transport energy. If i got 6 carbon alcohols and similar compounds they’d have high-octane and the right vapor pressures and the products should be soluble in ordinary gasoline.

And the price was right; gasoline was about \$3.50/ gallon, while wood was essentially free.  Hydrogen isn’t that expensive, even using electrolysis, and membrane reactors (a major product of our company) had the potential to make it cheaper. Wood + Hydrogen seemed like the cheaper version of syngas: CO +H2, and rust is similar to normal Fischer Tropsch catalyst. My costs would be low, and I’d expected to get better conversion since I should get fewer low molecular weight products like methane, ethane and methanol. Everything fundamental looked like it was in my favor.

With all the fundamentals in place, I figured my only problem would be to design a reasonably cheap reactor. At first I considered a fluidized bed reactor, but decided on a packed bed reactor instead, 8″ long by 3/4″ OD. This was a tube, filled with wood chips and iron oxide as a catalyst. I introduced high pressure hydrogen via a 150 psi hydrogen + 5% He mix. I hoped to see gasoline and water come out the other end. (I had the hydrogen – helium mix left over from a previous experiment, and was paying rental; otherwise I would have used pure hydrogen). I used heat tape and a controller to keep the temperature near-constant.

Controlling the temperature was key, I thought, to my aim of avoiding dehydration and the formation of new carbon-carbon bonds. At too high a temperature, the cellulose molecules would combine and lose water to form a brown high molecular weight tar called bio-oil, as well as methane and char. Bio-oil is formed the same way you form caramel from sugar, and as with sugar, it’s nothing you’d want to put in a car. If I operated at too low a temperature (or with the wrong catalyst) the reaction would be too slow, and the capital costs would be excessive. I could keep the temperature in the right (Goldilocks) temperature, I thought with the right catalyst and the right (high) hydrogen pressure.

No matter how I did this, I knew that I’d get some carbon-carbon bond formation, and perhaps a little char, but so long as it wasn’t too much it should be manageable. I figured I could hydrogenate the tar and remove the char at the end of the process. Most of the gasoline energy would come from the trees, and not the hydrogen, and there would be little hydrogen wasted forming methane. Trees would always be cheap: they grow quickly, and are great at capturing solar energy. Many cities pay for disposal of their tree waste, so perhaps a city would pay us to take their wood chips. With cheap wood, the economics would be good so long as used all the hydrogen I put in, and got some reasonable fraction of energy from the wood.

i began my reaction at 150°C with 50 psi hydrogen. At these conditions, I saw no reaction; I then raised the temperature to 200°C, then raised the pressure to 100 psi (still nothing) and then tried 250°C, still at 100psi. By now we were producing water but it was impossible to tell if we were hydrogenating the cellulose to gasoline, or dehydrating the cellulose to bio-oil.

As it turned out we were getting something worse that bio-oil: bio-oil gunk. Instead of the nasty brown liquid that’s made when wood is cooked to dehydration (water removal, caramelization), I got something that was nastier than I’d imagined possible. The wood molecules did not form nice chains but combined to form acidic, aromatic gunk (aromatic in both senses: benzine-type molecules and smelly) that still contained unreacted wood as a sort of press-board. The gunk was corrosive and reactive; it probably contained phenol, and seemed bent on reacting to form a phenolic glue. I found the gunk was insoluble in most everything: water, gasoline, oil, methanol (the only exception was ethanol). As best I can tell, you can not react this gunk with hydrogen to make gasoline as it is non-volatile, and almost impossible to get out of my clogged reactor. Perhaps a fluidized bed would be would be better, but I’m afraid it would form wood clumps even there.

I plan to try again, perhaps using higher pressure hydrogen and perhaps a liquid hydrogen carrier, to get the hydrogen to the core of the wood and speed the catalysis of the desired products. The key is finding a carrier that is not too expensive or that can be easily recovered.

Robert E. Buxbaum, Dec 13, 2013. Here’s something on a visit to my lab, on adding hydrogen to automobile engines, and on the right way to do science. And here’s my calculation for how much wood a woodchuck chucks if a woodchuck could chuck wood, (100 lbs/ night) plus why woodchucks do not chuck wood like beavers.