Tag Archives: rivers

Beavers, some of the best dam builders

I ran for water commissioner in 2016 (Oakland county, Michigan; I’ll be running again in 2020), and one of my big issues was improving our rivers. Many are dirty and “flashy”. Shortly after a rain they rise too high and move dangerously fast. At other times, they become, low, smelly, and almost disappear. There are flash floods in these rivers, few fish or frogs, and a major problem with erosion. A big part of a solution, I thought, would be to add few small dams, and to refurbish a few others by adding over-flow or underflow weirs. We had a small dam in the middle of campus at Michigan State University where I’d taught, and I’d seen that it did wonders for river control, fishing, and erosion. The fellow I was running against had been removing small dams in the belief that this made the rivers “more natural”. The Sierra Club thought he was right doing this; the fishing community and some homeowners and MSU alumni thought I was. My problem was that I was a Republican running in a Democratic district. Besides, the county executive, L. Brooks Patterson (also a Republican) was a tightwad. Among my the first stops on my campaign trail was to his office, and while he liked many of my ideas, and promised to support me, he didn’t like the idea of spending money on dams. I suggested, somewhat facetiously, using beavers, and idea that’s grown on me since. I’m still not totally convinced it’s a good idea, but bear with me as I walk you through it.

Red Cedar River dam as seen from behind the Michigan State University Administration Building.

Small dam on the Red Cedar River at Michigan State University behind the Administration Building. The dam provided good fishing and canoeing, and cleaned the water somewhat.

The picture at right shows the dam on the Red Cedar River right behind the Administration building at Michigan State University, looking south. During normal times the dam slows the river flow and raises the water level high enough to proved a good canoe trail, 2 1/2 miles to Okemos. Kids would fish behind the dam, and found it a very good fishing spot. The slow flow meant less erosion, and some pollution control. The speed of flow and the height of the river are related; see calculation here. After a big rain, a standing wave (a “jump”) would set up at the dam, raising its effective height by three or four feet. Students would surf the standing wave. More importantly, the three or four feet of river rise provided retention so that the Red Cedar did little damage. Some picnic area got flooded, but that was a lot better than having a destructive torrent. Here’s some more on the benefits of dams.

Between July 31 and Aug 1 the Clinton River rose nine feet in 3 hours, sending 130,000,000 cubic feet of water and sewage to lake St Clair.

Between July 31 and Aug 1 the Clinton River rose nine feet in 3 hours, sending 130,000,000 cubic feet of water to lake St Clair.

The Sierra club supported (supports) my opponent, in part because he supports natural rivers, without dams. I think they are wrong about this, and about their political support in general. Last night, following a 1 1/2 inch rain, the Clinton River flash flooded, going from 5.2 feet depth to 14 feet depth in just two hours. My sense is that the natural state of our rivers had included beavers and beaver dams until at least the mid 1700s. I figured that a few well-designed dams, similar to those at Michigan State would do wonders to stop this. Among the key locations were Birmingham, on the Rouge, Rochester, near Oakland University, Auburn Hills, and the Clinton River gorge, and near Lawrence Technical University. If we could not afford to build man-made dams, I figured we could seed some beaver into nearby nature areas, and let the beavers dam the rivers for free. It would bring back the natural look of these areas, as in the picture below. And engineers at Lawrence Tech and Oakland University might benefit from seeing the original dam engineers at work.

Beaver dam on a branch of the Huron River. Beavers are some of the best dam builders.

Beaver dam on a branch of the Huron River. A rather professional and attractive job at a bargain price.

Beavers are remarkably diligent. Once they set about a task, they build the basics of a dam in a few days, then slowly improve it like any good craftsman. As with modern dams, beaver dams begin with vertical piles set into the river bottom. Beavers then fill in the dam with cross-pieces, moving as much as 1000 lbs of wood in a night to add to the structure and slow the flow. They then add mud. They use their hearing to detect leaks, and slowly plug the leaks till the dam is suitably tight. Most of the streams I identified are narrow and pass through wooded areas. I think a beaver might dam them in a few days. Based on the amount of wood beavers move, and the fact that beavers are shaped like big woodchucks, I was able to answer the age-old question: how much wood would a woodchuck chuck if a woodchuck could chuck wood — see my calculation here.

Me, visiting the DNR to talk beavers

Me, visiting the DNR to talk beavers

There are a few things to check out before I start hiring beavers to take care of Oakland county flooding, and I have not checked them all out yet. Beavers don’t necessarily build where you want or as solidly, and sometimes they don’t build at all. If there are no predators, beavers can get lazy and just build a low-water lodge and a high water lodge, moving from one to the other as the river rises and falls. Hiring a beaver is like hiring an artistic contractor, it seems: you don’t necessarily get what you ask for, and sometimes you get more. Given the flash flooding we have, it’s hard to picture they’d make things worse, but what do I know? In some cases, e.g. the Red Run near the 12 towns drain, the need is for more than a beaver can deliver. Still, without beavers, the need would be for a billion gallons of retention on the Clinton alone, a 10 billion dollar project if carried out as my opponent likes to build. So, with no budget to work with, my next stop was at the Department of Natural Resources Customer Service Center (Lansing). I had some nice chats with beaver experts, and I’m happy to say they liked the idea, or at least they were not opposed. I’ve yet to talk to the Michigan director of dams, and will have to see what he has to say, but so far it seems like, if I get elected in 2020, I’ll be looking for some hard-working beavers, willing to relocate. I’d like to leave it to Beaver.

Robert E. Buxbaum, August 2, 2018. I still don’t get the Sierra Club’s idea of what a natural river would look like, or their commitment to Democrats. In my opinion, a river should include beavers, fish, and fishermen, and drainage should be done by whoever can do it best. Sierra club folks are welcomed to comment below.

US cancer rates highest on the rivers, low in mountains, desert

Sometimes I find I have important data that I can’t quite explain. For example, cancer rates in the US vary by more than double from county to county, but not at random. The highest rates are on the rivers, and the lowest are in the mountains and deserts. I don’t know why, but the map shows it’s so.

Cancer rate map of the US age adjusted

Cancer death rates map of the US age adjusted 2006-2010, by county. From www.statecancerprofiles.cancer.gov.

Counties shown in red on the map have cancer death rates between 210 and 393 per 100,000, more than double, on average the counties in blue. These red counties are mostly along the southern Mississippi, the Arkansas branching to its left; along the Alabama, to its right, and along the Ohio and the Tennessee rivers (these rivers straddle Kentucky). The Yukon (Alaska) shows up in bright red, while Hawaii (no major rivers) is blue; southern Alaska (mountains) is also in blue. In orange, showing less-elevated cancer death, you can make out the Delaware river between NJ and DC, the Missouri heading Northwest from the Mississippi, the Columbia, and the Colorado between the Grand Canyon and Las Vegas. For some reason, counties near the Rio Grande do not show elevated cancer death rates. nor does the Northern Mississippi and the Colorado south of Las Vegas.

Contrasting this are areas of low cancer death, 56 to 156 deaths per year per 100,000, shown in blue. These appear along the major mountain ranges: The Rockies (both in the continental US and Alaska), the Sierra Nevada, and the Appalachian range. Virtually every mountain county appears in blue. Desert areas of the west also appear as blue, low cancer regions: Arizona, New Mexico, Utah, Idaho, Colorado, south-west Texas and southern California. Exceptions to this are the oasis areas in the desert: Lake Tahoe in western Nevada and Lake Meade in southern nevada. These oases stand out in red showing high cancer-death rates in a sea of low. Despite the AIDS epidemic and better health care, the major cities appear average in terms of cancer. It seems the two effects cancel; see the cancer incidence map (below).

My first thought of an explanation was pollution: that the mountains were cleaner, and thus healthier, while industry had polluted the rivers so badly that people living there were cancer-prone. I don’t think this explanation fits, quite, since I’d expect the Yukon to be pollution free, while the Rio Grande should be among the most polluted. Also, I’d expect cities like Detroit, Cleveland, Chicago, and New York to be pollution-heavy, but they don’t show up for particularly high cancer rates. A related thought was that specific industries are at fault: oil, metals, chemicals, or coal, but this too doesn’t quite fit: Utah has coal, southern California has oil, Colorado has mining, and Cleveland was home to major Chemical production.

Another thought is poverty: that poor people live along the major rivers, while richer, healthier ones live in the mountains. The problem here is that the mountains and deserts are home to some very poor counties with low cancer rates, e.g. in Indian areas of the west and in South Florida and North Michigan. Detroit is a very poor city, with land polluted by coal, steel, and chemical manufacture — all the worst industries, you’d expect. We’re home to the famous black lagoon, and to Zug Island, a place that looks like Hades when seen from the air. The Indian reservation areas of Arizona are, if anything, poorer yet. 

Cancer incidence map

Cancer incidence,age adjusted, from statecancerprofiles.cancer.gov

My final thought was that people might go to the river to die, but perhaps don’t get cancer by the river. To check this explanation, I looked at the map of cancer incidence rates. While many counties repress their cancer rate data, the pattern in the remaining ones is similar to that for cancer death: the western mountain and desert counties show less than half the incidence rates of the counties along the southern Mississippi, the Arkansas, and the Ohio rivers. The incidence rates are somewhat elevated in the north-east, and lower on the Yukon, but otherwise it’s the same map as for cancer death. Bottom line: I’m left with an observation of the cancer pattern, but no good explanation or model.

Dr. Robert E. Buxbaum, May 1, 2014. Two other unsolved mysteries I’ve observed: the tornado drought of the last few years, and that dilute toxins and radiation may prevent cancer. To do science, you first observe, and then try to analyze.