Category Archives: sewage

Rain barrels aren’t much good. Wood chips are better, And I’d avoid rain gardens, even as a neighbor.

A lot of cities push rain barrels as a way to save water and reduce flooding. Our water comes from the Detroit and returns to it as sewage, so I’m not sure there is any water saving, but there is a small cash saving (very small) if you buy 30 to 55 gallon barrels from the city and connect them to the end of your drain spout. The rainwater you collect won’t be pure enough to drink, or safe for bathing, but you can use it to water your lawn and garden. This sounds OK, even patriotic, until you do the math, or the plumbing, or until you consider the wood-chip alternative.

The barrels are not cheap, even when subsidized they cost about $100 each. Add to this the cost and difficulty of setting up the collection system and the distribution hose. Water from your rain barrel will not flow through a normal nozzle as there is hardly any pressure. Expect watering to take a lot longer than you are used to.

40 gallon rain barrels. Two of these give about 70 usable gallons every heavy rain fall. That’s about 70¢ worth.

In Michigan you can not leave the water in your barrel over the winter, the water will freeze and the barrel will crack. You have to drain the tank completely every fall, an almost impossible task, and the tank is attached to a rainspout and the last bit of water is hard to get out. Still, you have to do it, or the barrel will crack. And the savings for all this is minimal. During a rainy month, you don’t need this water. During a dry month, there is no water to use. Even at the best, the The marginal cost of water in our town is less than 1¢ per gallon. For all the work and cost to set up, two complete 40 gallon tanks (like those shown) will give you at most about 70 usable gallons. That’s to say, almost 70¢ per full filling.

How much lawn can you water? Assume you like to water your lawn to the equivalent of 1″ of rain per week, your 70 gallons will water about 154 ft2 of lawn or garden, virtually nothing compared to the typical Michigan 2000 ft2 lawn. You’ll still have to get most of your water from the city’s main. All that work, for so little benefit.

Young trees with chip volcanos, 1 ft high x18″. Spread the chips to the diameter of the leaves.You don’t need more than 2″.

A far better option is wood chips. They don’t cover a lawn, but they’re great for shrubs, trees or a garden. Wood chips are easy to spread, and they stop weeds and hold water. The photo at left shows a wood chips around the shrubs, and a particularly poor use of wood chips around the trees. For shrubs, trees, or a garden, I suggest you put down 1 to 2 inches of wood chips. Surround a young tree at that depth to the diameter of the branches. Do not build a “chip volcano,” as this lazy landscaper has done.

Consider that, covering 500 ft2 of area to a depth of 1.5 inches will take about 60 cubic feet of wood chips. That will cost about $35 dollars at the local Home Depot. This is enough to hold about 1.25″ or rainwater, That’s about 100 ft3 or water or 800 gallons. The chips prevent excess evaporation while preventing weeds and slowly releasing the water to your garden. You do no work. The chips take almost no work to spread, and will keep on working for years, with no fear of frost-damage. A as the chips stop working, they biocompost slowly into fertilizer. That’s a win.

There is a worst option too, called a rain garden. This is often pushed by environmental-gooders. You dig a hole near your downspout, perhaps ten feet in diameter, by two feet deep, and plant native grasses (weeds). When it rains, the hole fills with water creating a mini wetland that will soon smell like the swamp that it is. If you are not lucky, the water will find a way to leak into your basement. If that’s your problem look here. If you are luckier, your mini-swamp will become the home of mosquitos, frogs, and snakes. The plants will grow, then die, and rot, and look awful. It is very hard to maintain native grasses. That’s why people drain swamps and grow trees or turf or vegetables. If you want to see a well-maintained rain garden, they have two on the campus of Lawrence Tech. A wetland isn’t bad, but you want drainage, Make a bioswale or muir.

Robert Buxbaum, May 31, 2023. I ran for water commissioner some years back.

Upgrading landfill and digester gas for sale, methanol

We live in a throw-away society, and the majority of it, eventually makes its way to a landfill. Books, food, grass clippings, tree-products, consumer electronics; unless it gets burnt or buried at sea, it goes to a landfill and is left to rot underground. The product of this rot is a gas, landfill gas, and it has a fairly high energy content if it could be tapped. The composition of landfill gas changes, but after the first year or so, the composition settles down to a nearly 50-50 mix of CO2 and methane. There is a fair amount of water vapor too, plus some nitrogen and hydrogen, but the basic process is shown below for wood decomposition, and the products are CO2  and methane.

System for sewage gas upgrading, uses REB membranes.

C6 H12 O6  –> 3 CO2  + 3 CH4 

This mix can not be put in the normal pipeline: there is too much CO2  and there are too many other smelly or condensible compounds (water, methanol, H2S…). This gas is sometimes used for heat on site, but there is a limited need for heat near a landfill. For the most part it is just vented or flared off. The waste of a potential energy source is an embarrassment. Besides, we are beginning to notice that methane causes global-warming with about 50 times the effect of CO2, so there is a strong incentive to capture and burn this gas, even if you have no use for the heat. I’d like to suggest a way to use the gas.

We sell small membrane modules too.

The landfill gas can be upgraded by removing the CO2. This can be done via a membrane, and REB Research sells a membranes that can do this. Other companies have other membranes that can do this too, but ours are smaller, and more suitable to small operations in my opinion. Our membrane are silicone-based. They retain CH4 and CO and hydrogen, while extracting water, CO2 and H2S, see schematic. The remainder is suited for local use in power generation, or in methanol production. It can also be used to run trucks. Also the gas can be upgraded further and added to a pipeline for shipping elsewhere. The useless parts can be separated for burial. Find these membranes on the REB web-site under silicone membranes.

Garbage trucks in New York powered by natural gas. They could use landfill gas.

There is another gas source whose composition is nearly identical to that of landfill gas; it’s digester gas, the output of sewage digesters. I’ve written about sewage treatment mostly in terms of aerobic bio treatment, for example here, but sewage can be treated anaerobically too, and the product is virtually identical to landfill gas. I think it would be great to power garbage trucks and buses with this. Gas. In New York, currently, some garbage trucks are powered by natural gas.

As a bonus, here’s how to make methanol from partially upgraded landfill or digester gas. As a first step 2/3 of the the CO2 removed. The remained will convert to methanol. by the following overall chemistry:

3 CH4 + CO2 + 2 H2O –> 4 CH3OH. 

When you removed the CO2., likely most of the water will leave with it. You add back the water as steam and heat to 800°C over Ni catalyst to make CO and H2. That’s done at about 800°C and 200 psi. Next, at lower temperature, with an appropriate catalyst you recombine the CO and H2 into methanol; with other catalysts you can make gasoline. These are not trivial processes, but they are doable on a smallish scale, and make economic sense where the methane is essentially free and there is no CNG customer. Methanol sells for $1.65/gal when sold by the tanker full, but $5 to $10/gal at the hardware store. That’s far higher than the price of methane, and methanol is far easier to ship and sell in truckload quantities.

Robert Buxbaum, June 8, 2021

Sewage reactor engineering, Stirred tank designs

Over the past few years, I’ve devoted several of these essays to analysis of first-stage sewage treatment reactors. I described and analyzed the rotating disc reactor found at the plant is Holly here, and described the racetrack,“activated sludge” plug reactor found most everywhere else here. I also described a system without a primary clarifier found near Cincinatti. All of these were effective for primary treatment; soluble organics are removed by bio-catalyzed oxidation:

2 H-C-O-H + O2 –> CO2 + H2O.

A typical plant in Oakland county treats 2,000,000 gallons per day of this stuff, with the bio-reactor receiving liquid waste containing about 200 ppm of soluble and colloidal biomass. That’s 400 dry gallons for those interested, or about 3200 dry lbs./day. About half of this will be oxidized to CO2 and water. The rest (cell bodies) are removed with insoluble components, and applied to farmers fields or buried, or burnt in an incinerator.

There is another type of reactor used in Oakland County. It’s mostly used for secondary treatment, converting consolidated sludge to higher-quality sludge that can be sold or used on farms with less restriction, but it is a type of reactor used at the South Lyon treatment plant, for primary treatment. It is a Continually stirred tank reactor, or CSTR, a design that is shown in schematic below.

As of some years ago, the South Lyon system involved a single largish pond lined with plastic with a volume about 2,000,000 gallons total. About 700,000 gallons per day of sewage liquids went into the lagoon, at 200 ppm soluble organics. Air was bubbled through the liquid providing a necessary reactant, and causing near-perfect mixing of the contents. The aim of the plant managers is to keep the soluble output to the, then-acceptable level of 10 ppm; it’s something they only barely managed, and things got worse as the flow increased. Assume as before, a value V and a flow Q.

We will call the concentration of soluble organics C, and call the initial concentration, the concentration that enters,  Ci. It’s about 200 ppm. We’ll call the output concentration Co, and for this type of reactors, Co = C.  The reaction is first order, approximately, so that, if there were no flow into or out of the reactor, the concentration of organics would decrease at the rate of

dC/dt = -kC.

Here k is a reaction constant, dependent on temperature oxygen and cell content. It’s typically about 0.5/hour. For a given volume of tank the rate of organic removal is VkC. We can now do a mass balance on soluble organics. Since the rate of organic entry is QCi and the rate leaving by flow is QC. The difference must be the amount that is reacted away:

QCi – QC = VkC.

We now use algebra, to find that

Co = Ci/(1 + kV/Q).

V/Q is sometimes called a residence time; for the system. At normal flow, the residence time of the South Lyon system is about 2.8 days or 68.6 hours. Plugging these numbers in, we find that the effluent from the reactor leaves at 1/35 of the input concentration, or 5.7 ppm, on average. This would be fine except that sometimes the temperature drops, or the flow increases, and we start violating the standard. A yet bigger problem was that the population increased by 50% while the EPA standard got more stringent to 2 ppm. This was solved by adding another, smaller reactor, volume = V2. Using the same algebraic analysis, as above you can show that, with two reactors,

Co = Ci/ [(1 + kV/Q)(1+kV2/Q)].

It’s a touchy system, but it meets government targets, just barely, most of the time. I think it is time to switch to a plug-flow reactor system, as used in much of Oakland county. In these, the fluid enters a channel and is reacted as it flows along. Each gallon of fluid, in a sense moves by itself as if it were its own reactor. In each gallon, we can say that dC/dt = -kC. We can thus solve for Co in terms of the total residence time, where t again is V/Q. We can rearrange this equation and integrate: ∫dC/C = – ∫kdt. We then find that, 

      ln(Ci/Co) = kt = kV/Q

To convert 200 ppm sewage to 2 ppm we note that Ci/Co = 100 and that V = Q ln(100)/k = Q (4.605/.5) hours. An inflow of 1000,000 gallons per day = 41,667 gal/ hour, and we find the volume of tank is 41,667 x 9.21 = 383,750 gallons. This is quite a lot smaller than the CSTR tanks at South Lyon. If we converted the South Lyon tanks to a plug-flow, race-track design, it would allow it to serve a massively increased population, discharging far cleaner sewage. 

Robert Buxbaum, November 17, 2019

Why does water cost what it does?

Water costs vary greatly about Oakland county, and around the US, and I have struggled in vain to find out why. In part the problem is that each city gets to add as much maintenance and management costs as the city government thinks appropriate. High management and infrastructure fees can increase to the cost of water, but I also not that different cities about Oakland County Michigan get their water at different rates from the multi-county organization that oversees water in South East Michigan: GLWA, The Great Lakes Water Authority.

$112 water bill for zero usage. The base charge is so large that prices are essentially independent of useage.

I’ve attended meetings, both local and multi county and have tried to find out why one town gets its water at a far lower rate than another, near by. Towns get lower rates if they have a water tower, but it is not at all clear what the formula is. It also helps to separate the storm sewage from the sanitary sewage — something that I have proposed for all of Oakland county, but if there is fixed formula of how that affects rates, I’ve not seen it. And I wonder how well communities monitor the amount of storm sewage they generate.

The water itself is free. For the most part, in this county, we pump it from the Detroit river. Some of the rest of the water is pumped from wells. None of this costs anything. There is a pump cost, but it is manicure. Pumping 1 gallon of water up 75 feet, costs about 0.002¢ in pumping cost. The rest of the cost is infrastructure: the cost of the pumps, the pipes, the treatment, the billing and sewage. Among the sewage fees is a pollution penalty, and Oakland county pays plenty of pollution penalties. When it rains, we generate more sewage than the system will handle, and we dump the rest into the rivers and lakes. This results in closed beaches and poisoned fish, and fines too. The county pays the EPA when we do this, and the county passes the cost to the cities. I don’t know what the formula for fee distribution is, and don’t even know what it should be. What I do know is that we do this vastly too often.

Another oddity is that we bill on a per gallon basis. For my home, the bill is about 2¢/ gallon — 100 times the pumping cost. Though the city can claim that we are paying for infrastructure, both clean water infrastructure and sewage infrastructure, it seems odd to bill on a per-gallon used basis, and 1000 times the true per-gallon price. Since most of the price of water is the infrastructure and management cost, it seems like a regressive tax to charge people on the basis of per-gallon used. I also find it odd that cities do a propaganda campaign to tell folks to use less water. Why? I’d much prefer to charge a far lower base charge, and then bill significantly per-gallon. As with much that is socialist, the current system is inefficient, but pleasant for the management.

August 21, 20019, Robert Buxbaum

Kindness and Cholera in California

California likely leads the nation in socially activist government kindness. It also leads the nation in homelessness, chronic homelessness, and homeless veterans. The US Council on Homelessnesses estimates that, on any given day, 129,972 Californians are homeless, including 6,702 family households, and 10,836 veterans; 34,332 people are listed among “the chronic homeless”. That is, Californians with a disability who have been continuously homeless for one year or cumulatively homeless for 12 months in the past three years. No other state comes close to these numbers. The vast majority of these homeless are in the richer areas of two rich California cities: Los Angeles and San Francisco (mostly Los Angeles). Along with the homeless in these cities, there’s been a rise in 3rd world diseases: cholera, typhoid, typhus, etc. I’d like to explore the relationship between the policies of these cities and the rise of homelessness and disease. And I’d like to suggest a few cures, mostly involving sanitation. 

A homeless encampment in LosAngeles

Most of the US homeless do not live in camps or on the streets. The better off US homelessness find it is a temporary situation. They survive living in hotels or homeless shelters, or they “couch-serf,” with family or friends. They tend to take part time jobs, or collect unemployment, and they eventually find a permanent residence. For the chronic homeless things are a lot grimmer, especially in California. The chronic unemployed do not get unemployment insurance, and California’s work rules tend to mean there are no part time jobs, and there is not even a viable can and bottle return system in California, so the homeless are denied even this source of income*. There is welfare and SSI, but you have to be somewhat stable to sign up and collect. The result is that California’s chronic homeless tend to live in squalor strewn tent cities, supported by food handouts.

Californians provide generous food handouts, but there is inadequate sewage, or trash collection, and limited access to clean water. Many of the chronic homeless are drug-dependent or mentally ill, and though they might  benefit from religion-based missions, Los Angeles has pushed the missions to the edges of the cities, away from the homeless. The excess food and lack of trash collection tends to breed rats and disease, and as in the middle ages, the rats help spread the diseases. 

Total homelessness by state, 2018; California leads the nation. The better off among these individuals do not live on the streets, but in hotels or homeless shelters. For most, this is a short term situation. The rest, about 20%, are chronically homeless. About half of these live on the streets without adequate sewage and water. Many are drug-dependent.

The first major outbreaks of the homeless camps appeared in Los Angeles in August and September of 2017. They reappeared in 2018, and by late summer, rates were roughly double 2017’s. This year, 2019, looks like it could be a real disaster. The first case of a typhoid infected police officer showed up in May. By June there were six police officers with typhoid, and that suggests record numbers are brewing among the homeless.

To see why sanitation is an important part of the cure, it’s worth noting that typhoid is a disease of unclean hands, and a relative of botulism. It is spread by people who go to the bathroom and then handle food without washing their hands first. The homeless camps do not, by and large, have hand washing stations. and forced hygiene is prohibited. Los Angeles has set up porta-potties, with no easy hand washing. The result is typhoid epidemic that’s even affecting the police (six policemen in June!).

rate od disease spread.
R-naught, reproduction number for some diseases, CDC.

Historically, the worst outbreaks of typhoid were spread by food workers. This was the case with “typhoid Mary of the early 20th century.” My guess is that some of the police who got typhoid, got it while trying to feed the needy. If so, this fellow could become another Typhoid Mary. Ideally, you’d want shelters and washing stations where the homeless are. You’d also want to pickup the dirtier among the homeless for forced washing and an occasional night in a homeless shelter. This is considered inhumane in Los Angeles, but they do things like this in New York, or they did.

Typhus is another major disease of the California homeless camps. It is related to typhoid but spread by rodents and their fleas. Infected rodents are attracted to the homeless camps by the excess food. When the rodents die, their infected fleas jump to the nearest warm body. Sometimes that’s a person, sometimes another animal. In a nastier city, like New York, the police come by and take away old food, dead animals, and dirty clothing; in Los Angeles they don’t. They believe the homeless have significant squatters rights. California’s kindness here results in typhus.

Reproduction number and generation time for some diseases.

The last of the major diseases of the homeless camps is cholera. It’s different from the others in that it is not dependent on squalor, just poor health. Cholera is an airborne disease, spread by coughing and sneezing. In California’s camps, the crazy and sick dwell close to each other and close to healthy tourists. Cholera outbreaks are a predictable result. And they can easily spread beyond the camps to your home town, and if that happens a national plague could spread really fast.

I’d discussed R-naught as a measure of contagiousness some months ago, comparing it to the reproductive number of an atom bomb design, but there is more to understanding a disease outbreak. R-naught refers merely to the number of people that each infected person will infect before getting cured or dying. An R-naught greater than one means the disease will spread, but to understand the rate of spread you also need the generation time. That’s the average time between when the host becomes infected, and when he or she infects others. The chart above shows that, for cholera, r-naught is about 10, and the latency period is short, about 9 days. Without a serious change in California’s treatment of the homeless, each cholera case in June will result in over 100 cases in July, and well over 10,000 in August. Cholera is somewhat contained in the camps, but once an outbreak leaves the camps, we could have a pandemic. Cholera is currently 80% curable by antibiotics, so a pandemic would be deadly.

Hygiene is the normal way to prevent all these outbreaks. To stop typhoid, make bathrooms available, with washing stations, and temporary shelters, ideally these should be run by the religious groups: the Salvation Army, the Catholic Church, “Loaveser and Fishes”, etc. To prevent typhus, clean the encampments on a regular basis, removing food, clothing, feces and moving squatters. For cholera, provide healthcare and temporary shelters where people will get clean water, clean food, and a bed. Allow the homeless to work at menial jobs by relaxing worker hiring and pay requirements. A high minimum wage is a killer that nearly destroyed Detroit. Allow a business to hire the homeless to sweep the street for $2/hour or for a sandwich, but make a condition that they wash their hands, and throw out the leftovers. I suspect that a lot of the problems of Puerto Rico are caused by a too-high minimum wage by the way. There will always be poor among you, says the Bible, but there doesn’t have to be typhoid among the poor, says Dr. Robert Buxbaum.

*California has a very strict can and bottle return law where — everything is supposed to be recycled– but there are very few recycling centers, and most stores refuse to take returns. This is a problem in big government states: it’s so much easier to mandate things than to achieve them.

July 30, 2019. I ran for water commissioner in Oakland county, Michigan, 2016. If there is interest, I’ll run again. One of my big issues is clean water. Oakland could use some help in this regard.

How to avoid wet basements

My house is surrounded my mulch — it absorbs enough rainwater that I rarely have to water.

Generally speaking water gets to your basement from rain, and the basic way you avoid wet basements is by providing some more attractive spot for the rainwater to go to. There are two main options here: divert the water to a lake or mulch-filled spot at least 8 feet away from your home, or divert it to a well-operated street or storm drain. My personal preference is a combination of both.

At right I show a picture of my home taken on a particularly nice day in the spring. Out front is a mulch-filled garden and some grass. On the side, not shown is a driveway. Most of the rain that hits our lawn and gardens is retained in 4 inches of mulch, and waters the plants. Four inches of mulch-covered ground will hold at least four inches of rainwater. Most of the rain that hits the house is diverted to downspouts and flows down the driveway to the street. Keeping some rainwater in the mulch means you don’t have to pay so much to water the trees and shrubs. The tree at the center here is an apple tree. I like fruit trees like this, they really suck up water, and I like the apples. We also have blueberries and roses, and a decorative pear (I like pears too, but they are messy).

In my opinion, you want some slope even in the lawn area, so excess rainwater will run to the sewers and not form a yard-lake, but that’s a professional preferences; it’s not always practical and some prefer a brief (vernal ) lake. A vernal lake is one that forms only in the spring. If you’ve got one, you may want to fill it with mulch or add trees that are more water tolerant than the apple, e.g. swamp oak or red cedar. Trees remove excess water via transpiration (enhanced evaporation). Red Cedars grow “knees” allowing them to survive with their roots completely submerged.

For many homes, the trick to avoiding a flooded basement is to get the water away from your home and to the street or a retention area.

When it comes to rain that falls on your hose, one option is to send it to a vernal lake, the other option is to sent it to the street. If neither is working, and you find water in your basement, your first step is to try to figure out where your rainwater goes and how it got there. Follow the water when it’s raining or right after and see where it goes. Very often, you’ll discover that your downspouts or your driveway drain into unfortunate spots: spots that drain to your basement. To the extent possible, don’t let downspout water congregate in a porous spot near your house. One simple correction is to add extenders on the downspouts so that the water goes further away, and not right next to your wall. At left, I show a simple, cheap extender. It’s for sale in most hardware stores. Plastic or concrete downspout pans work too, and provide a good, first line of defense agains a flood basement. I use several to get water draining down my driveway and away from the house.

Sometimes, despite your best efforts, your driveway or patio slopes to your house. If this is the case, and if you are not quite ready to replace your driveway or patio, you might want to calk around your house where it meets the driveway or patio. If the slope isn’t too great, this will keep rainwater out for a while — perhaps long enough for it to dry off, or for most of the rainwater to go elsewhere. When my driveway was put in, I made sure that it sloped away from the house, but then the ground settled, and now it doesn’t quite. I’ve put in caulk and a dirt-dam at the edge of the house. It keeps the water out long enough that it (mostly) drains to the street or evaporates.

A drain valve. Use this to keep other people’s sewer water out of your basement.

There is one more source of wet basement water, one that hits the houses in my area once a year or so. In our area of Oakland county, Michigan, we have combined storm and sanitary sewers. Every so often, after a big rain, other people’s rainwater and sanitary sewage will come up through the basement drains. This is really a 3rd world sewer system, but we have it this way because when it was put in, in the 1900s, it was first world. One option if you have this is to put in a one-way drain valve. There are various options, and I suggest a relatively cheap one. The one shown at right costs about $15 at Ace hardware. It will keep out enough water, long enough to protect the important things in your home. The other option, cheaper and far more hill-billy, is to stuff rags over your basement drains, and put a brick over the rags. I’ll let you guess what I have in my basement.

Robert Buxbaum, June 13, 2019

Water Conservation for Michigan – Why?

The Michigan Association of Planners is big on water conservation, joining several environmental groups to demand legislation requiring water conservation:

POLICY 4. Water Conservation: The Michigan Association of Planning supports state legislation requiring water conservation for public, and private users.

Among the classic legislation passed so far are laws requiring low flush toilets, and prohibiting high-volume shower heads as in this Seinfeld episode. I suppose I should go along: I’m running for water commissioner, and consider myself a conservationist. The problem is, I can’t see a good argument for these laws for most people here in Oakland County, or in neighboring Macomb and Wayne Counties. The water can’t run out because most users take it from the river and return it to the river, cleaned after it’s used; it’s all recycled.

Map of the main drinking-water pipes serving south-east Michigan

Map of the main drinking-water pipes serving south-east Michigan

The map above shows the clean water system for south-east Michigan. The high-population areas, the ones that are colored in the map, get their water from the Detroit River or from Lake Huron. It’s cleaned, pumped, and carried to your home along the pipes shown. Then after you’ve used the water, it travels back along another set of pipes to the water treatment plant and into the Detroit River.

Three-position shower head -- a wonderful home improvement  I got it at universal plumbing.

Three-position shower head — a wonderful home improvement. I got it at universal plumbing.

When the system is working well, the water we return to the Detroit River is cleaner than the water we took in. So why legislate against personal use? If a customer wants to enjoy a good shower, and is willing to pay for the water at 1.5¢ per gallon, who cares how much water that customer uses? I can understand education efforts, sort-of, but find it hard to push legislation like we have against a high-volume shower head. We can not run out, and the more you use, the less everyone pays per gallon. A great shower head is a great gift idea, in my opinion.

The water department does not always work well, by the way, and these problems should be solved by legislation. We give away, for $200/year, high value clean water to Nestle company and then buy it back for $100,000,000. That’s a problem. Non-flushable toilet wipes are marketed as flushable; this causes sewer blockades. Our combined sewers regularly dump contaminated water into our rivers, lakes, and basements. These problems can be solved with legislation and engineering. It’s these problems that I’m running to solve.

Robert Buxbaum, January 6, 2019. If you want to save water, either to save the earth, or because you are cheep, here are some conservation ideas that make sense (to me).

We don’t need no stinking primary clarifier

Virtually every sewage plant of Oakland County uses the activated sludge process, shown in the layout below. Raw sewage comes in, and goes through physical separation — screening, grit removal, and a first clarifier – settling tank before moving to the activated sludge oxidation reactor. The 1st clarifier, shown at left below, removes about half of the incoming organics, but it often stinks and sometimes it “pops” bubbles of fart. This is usually during periods of low flow, like at night. When the flow is slow, it arrives at the plant as a rotting smelly mess; it’s often hard to keep the bubbles of smell down.

Typical Oakland Sewage plant, activated sludge process with a primary clarifier.

Typical Oakland County Sewage treatment plant, activated sludge process with a primary clarifier.

The smell is much improved in the oxidation reactor, analyzed here, and in the 2nd clarifier, shown above at right. Following that is a filter, an ultraviolet cleanup stage, and the liquids are discharged to a local river. In Oakland county, the solids from the two clarifiers are hauled off to a farm, or buried in a landfill. Burial in a landfill is a costly waste, as I discuss here. The throughputs for most of these treatment plants is only about 2-3 million gallons of sewage per day. But Oakland county can produce 500 million gallons of sewage per day. The majority of this goes to Detroit for treatment, and sometimes the overflow is dumped rotting and smelly, in the rivers.

A few months ago, I visited the Sycamore Creek Wastewater facility outside of Cincinnati. This is an 8 million gallon per day plant that uses the “extended aeration process”, shown in the sketch below. I noticed several things I liked: the high throughput (the plant looks no bigger than our 2-3 million gallon plants) and the lack of a bad smell, primarily. The Sycamore Creek plant had an empty hole where the primary clarifier had once been. Lacking this clarifier, the screened sewage could not sit and pop. Instead it goes directly from grit removal to the oxidation reactor, a reactor that looks no bigger than in our plants. This reactor manages a four times higher throughput, I think, because of a higher concentration of cellular catalyst. Consider the following equation derived in a previous post:

ln C°/C = kV/Q.

Here, C° and C are the incoming and exit concentrations of soluble organic; k is the reaction rate, proportional to cellular concentration, V is the volume of the reactor, Q is the flow, and ln is natural log. The higher cellular concentration in the extended aeration plant results in an increased reaction rate, k. The higher the value of k, the higher the allowed flow, Q, per reactor volume, V.

The single clarifier at the end of the Sycamore Creek plant does not look particularly big. My sense is that it deals with a lot more sludge and flow than is seen in our 2nd clarifiers because (I imaging) the sludge is higher density, thus faster settling. I expect that, without the 1 clarifier, there is extra iron and sulfate in the sludge, and more large particles too. In our plants, a lot of these things are removed in the primary clarifier. Sludge density is also increased, I think, because the Cincinnati plant recycle a greater percentage of the sludge (I list it as 90% in the diagram). Extra iron in the reactor also helps to remove phosphates from the water effluent that flows back to the river, an important pollution concern. Iron phosphates are insoluble, and thus leave with the sludge. In Oakland county’s activated sludge plants, it is typical to add iron to the reactor or clarifier. In Cincinnati’s extended aeration plant, I’m told, iron addition is generally not needed.

Typical Oakland Sewage plant, activated sludge process with a primary clarifier.

Cincinnati sewage treatment plant, extended aeration process with no primary clarifier.

The extended aeration part of the above process refers to the secondary sludge oxidizer, the continuously stirred tank reactor, or CSTR shown at lower right above. The “CSTR” is about 1/5 the volume of the main oxidation reactor and about the size of a clarifier. Oxidation in the CSTR compliments that in the main oxidizer removing organics, making bio-polymer, and improving (I think) the quality of the sludge that goes to the farms. Oxidation in the CSTR reduces the amount of sludge that goes to the farms. The sludge that does go, is  less-toxic and more concentrated in organics and minerals. I’m not sure if the CSTR product is as good as the product from an anaerobic digester, or if the CSTR is cheaper to operate, but it looks cheaper since there is no roof, and no (or minimal) heating. This secondary oxidizer is very efficient at removing organics because the cellular catalyst concentration is very high – much higher than in the main oxidizer.

During periods of high load, early morning, the CSTR seems to serve as a holding tank so that sludge does not build up in the clarifier. Too much sludge in the clarifier can start to rot, and ruin the effluent quality. The way you tell if there is too much sludge, by the way, is through a device called the “sludge judge.” I love that name. The Cincinnati plant used a centrifugal drier; none of our plants do. The Cincinnati plant had gap the bubble spots of the main oxidizer. This is good for denitrification, I’m told, an important process that I discuss elsewhere.

The liquid output of their clarifier (or ours) is not pure enough to be sent directly to the river. In this plant, the near-pure water from the clarifier is sent to a trickling filter, a bed of sand and anthracite that removes colloidal remnants. Some of our plants do the same. I suspect that the large surface area in this filter is also home to some catalysis: last stage oxidation of remaining bio-organics. On a regular basis, the filter bed is reverse-flushed to remove cellular buildup, slime, and send it to the beginning of the process. The trickling filter output is then sent to an ultraviolet, bacteria-killing step before being released to the rivers. All in all, I suspect that an extended aeration process like this is worth looking into for Oakland County, especially for our North Pontiac sewage treatment facility. That plant is particularly bad smelling, and clearly too small to treat all its sewage. Perhaps we can increase the throughput and decrease the smell at a minimal cost.

Dr. Robert E. Buxbaum, December 18, 2018. I’m running for water commissioner of Oakland county, MI. If you like, visit my campaign site. Here are some sludge jokes and my campaign song.

Activated sludge sewage treatment bioreactors

I ran for water commissioner of Oakland county in 2016, a county with 1.3 million people and eight sewage treatment plants. One of these plants uses the rotating disk contractor, described previously, but the others process sewage by bubbling air through it in a large tank — the so-called, activated sludge process. A description is found here in Wikipedia, but with no math, and thus, far less satisfying than it could be. I thought I might describe this process relevant mathematics, for my understanding and those interested: what happens to your stuff after you flush the toilet or turn on the garbage disposal.

Simplified sewage plant: a plug-flow reactor with a 90+% solids recycle used to maintain a high concentration of bio-catalyst material.

Simplified sewage plant: a bubbling, plug-flow bio-reactor with 90% solids recycle and a settler used to extract floc solids and bio-catalyst material.

In most of the USA, sanitary sewage, the stuff from your toilet, sink, etc. flows separately from storm water to a treatment plant. At the plant, the sewage is first screened (rough filtered) and given a quick settle to remove grit etc. then sent to a bubbling flow, plug-flow bioreactor like the one shown at right. Not all cities use this type of sludge processes, but virtually every plant I’ve seen does, and I’ve come to believe this is the main technology in use today.

The sewage flows by gravity, typically, a choice that provides reliability and saves on operating costs, but necessitates that the sewage plant is located at the lowest point in the town, typically on a river. The liquid effluent of the sewage, after bio-treatment is typically dumped in the river, a flow that is so great more than, during dry season, more than half the flow of several rivers is this liquid effluent of our plants – an interesting factoid. For pollution reasons, it is mandated that the liquid effluent leaves the plant with less than 2 ppm organics; that is, it leaves the plant purer than normal river water. After settling and screening, the incoming flow to the bio-reactor typically contains about 400 ppm of biomaterial (0.04%), half of it soluble, and half as suspended colloidal stuff (turd bits, vegetable matter, toilet paper, etc). Between the activated sludge bio-reactor and the settler following it manage to reduce this concentration to 2 ppm or less. Soluble organics, about 200 ppm, are removed by this cellular oxidation (metabolism), while the colloidal material, the other 200 ppm, is removed by adsorption on the sticky flocular material in the tank (the plug-flow tank is called an oxidation ditch, BTW). The sticky floc is a product of the cells. The rate of oxidation and of absorption processes are proportional to floc concentration, F and to organic concentration, C. Mathematically we can say that

dC/dt = -kFC

where C and F are the concentration of organic material and floc respectively; t is time, and k is a reaction constant. It’s not totally a constant, since it is proportional to oxygen concentration and somewhat temperature dependent, but I’ll consider it constant for now.

As shown in the figure above, the process relies on a high recycle of floc (solids) to increase the concentration of cells, and speed the process. Because of this high recycle, we can consider the floc concentration F to be a constant, independent of position along the reactor length.

The volume of the reactor-ditch, V, is fixed -it’s a concrete ditch — but the flow rate into the ditch, Q, is not fixed. Q is high in the morning when folks take showers, and low at night. It’s also higher — typically about twice as high — during rain storms, the result of leakage and illegal connections. For any flow rate, Q, there is a residence time for a bit of sewage flowing through a tank, τ = V/Q. We can now solve the above equation for the value of τ for an incoming concentration C° = 400 ppm, an outgoing concentration Co of 2 ppm. We integrate the equation above and find that:

ln (C°/Co) = kFτ

Where τ equals the residence time, τ = V/Q. Thus,

ln (C°/Co) = kFV/Q.

The required volume of reactor, V, is related to the flow rate, Q, as follows for typical feed and exit concentrations:

V = Q/kF ln( 400/2) = 5.3 Q/kF.

The volume is seen to be dependent on F. In Oakland county, tank volume V is chosen to be one or two times the maximum expected value of Q. To keep the output organic content to less than 2 ppm, F is maintained so that kF≥ 5.3 per day. Thus, in Oakland county, a 2 million gallon per day sewage plant is built with a 2-4 million gallon oxidation ditch. The extra space allows for growth of the populations and for heavy rains, and insures that most of the time, the effluent contains less than 2 ppm organics.

Bob Martin by the South Lyon, MI, Activated Sludge reactor

Bob Martin chief engineer the South Lyon, MI, Activated Sludge plant, 2016. His innovation was to control the air bubblers according to measurements of the oxygen content. The O2 sensor is at bottom; the controller is at right. When I was there, some bubblers were acting up.

As you may guess, the activated sludge process requires a lot of operator control, far more than the rotating disk contractor we described. There is a need for constant monitoring and tweaking. The operator deals with some of the variations in Q by adjusting the recycle amount, with other problems by adjusting the air flow, or through the use of retention tanks upstream or downstream of the reactor, or by adding components — sticky polymer, FeCl3, etc. Finally, in have rains, the settler-bottom fraction itself is adjusted (increased). Because of all the complexity. sewer treatment engineer is a high-pay, in demand, skilled trade. If you are interested, contact me or the county. You’ll do yourself and the county a service.

I’d mentioned that the effluent water goes to the rivers in Oakland county. In some counties it goes to the fields, a good idea, I think. As for the solids, in Oakland county, the solid floc is concentrated to a goo containing about 5% solids. (The goo is called unconsolidated sludge) It is shipped free to farmer fields, or sometimes concentrated to more than 5% (consolidated sludge), and provided with additional treatment, anaerobic digestion to improve the quality and extract some energy. If you’d like to start a company to do more with our solids, that would be very welcome. In Detroit the solids are burned, a very wasteful, energy-consuming process, IMHO. In Wisconsin, the consolidated sludge is dried, pelletized, and sold as a popular fertilizer, Milorganite.

Dr. Robert Buxbaum, August 1, 2017. A colleague of mine owned (owns?) a company that consulted on sewage-treatment and manufactured a popular belt-filter. The name of his company: Consolidated Sludge. Here are some sewer jokes and my campaign song.

A rotating disk bio-reactor for sewage treatment

One of the most effective designs for sewage treatment is the rotating disk bio-reactor, shown below. It is typically used in small-throughput sewage plants, but it performs quite well in larger plants too. I’d like to present an analysis of the reactor, and an explanation of why it works so well.

A rotating disc sewage reactor.

A rotating disk sewage reactor; ∂ is the thickness of the biofilm. It’s related to W the rotation rate in radians per sec, and to D the limiting diffusivity.

As shown, the reactor is fairly simple-looking, nothing more than a train of troughs filled with sewage-water, typically 3-6 feet deep, with a stack of discs rotating within. The discs are typically 7 to 14 feet in diameter (2-4 meters) and 1 cm apart. The shaft is typically close to the water level, but slightly above, and the rotation speed is adjustable. The device works because appropriate bio-organisms attach themselves to the disk, and the rotation insures that they are fully (or reasonably) oxygenated.

How do we know the cells on the disc will be oxygenated? The key is the solubility of oxygen in water, and the fact that these discs are only used on the low biological oxygen demand part of the sewage treatment process, only where the sewage contains 40 ppm of soluble organics or less. The main reaction on the rotating disc is bio oxidation of soluble carbohydrate (sugar) in a layer of wet slime attached to the disc.

H-O-C-H + O2 –> CO2 + H2O.

As it happens, the solubility of pure oxygen in water is about 40 ppm at 1 atm. As air contains 21% oxygen, we expect an 8 ppm concentration of oxygen on the slime surface: 21% of 40 ppm = 8 ppm. Given the reaction above and the fact that oxygen will diffuse five times more readily than sugar at least, we expect that one disc rotation will easily provide enough oxygen to remove 40 ppm sugar in the slime at every speed of rotation so long as the wheel is in the air at least half of the time, as shown above.

Let’s now pick a rotation speed of 1/3 rpm (3 minutes per rotation) and see where that gets us in terms of speed of organic removal. Since the disc is always in an area of low organic concentration, it becomes covered mostly with “rotifers”, a fungus that does well in low nutrient (low BOD) sewage. Let’s now assume that mass transfer (diffusion) of sugar in the rotifer slime determines the thickness of the rotifera layer, and thus the rate of organic removal. We can calculate the diffusion depth of sugar, ∂ via the following equation, derived in my PhD thesis.

∂ = √πDt

Here, D is the diffusivity (cm2/s) for sugar in the rotifera slime attached to the disk, π = 3.1415.. and t is the contact time, 90 seconds in the above assumption. My expectation is that D in the rotifer slime will be similar to the diffusivity sugar in water, about 3 x 10-6 cm2/s. Based on the above, we find the rotifer thickness will be ∂ = √.00085 cm2 = .03 cm, and the oxygen depth will be about 2.5 times that, 0.07 cm. If the discs are 1 cm apart, we find that, about 14% of the fluid volume of the reactor will be filled with slime, with 2/5 of this rotifer-filled. This is as much as 1000 times more rotifers than you would get in an ordinary constantly stirred tank reactor, a CSTR to use a common acronym. We might now imagine that the volume of this sewage-treatment reactor can be as small as 1000 gallons, 1/1000 the size of a CSTR. Unfortunately it is not so; we’ll have to consider another limiting effect, diffusion of nutrients.

Consider the diffusive mass transfer of sugar from a 1,000,000 gal/day flow (43 liters/sec). Assume that at some point in the extraction you have a concentration C(g/cc) of sugar in the liquid where C is between 40 ppm and 1 ppm. Let’s pick a volume of the reactor that is 1/20 the normal size for this flow (not 1/1000 the size, you’ll see why). That is to say a trough whose volume is 50,000 gallons (200,000 liters, 200 m3). If the discs are 1 cm apart, this trough (or section of a trough) will have about  4×10^8 cm2 of submerged surface, and about 9×10^8 total surface including wetted disc in the air. The mass of organic that enters this section of trough is 44,000 C g/second, but this mass of sugar can only reach the rotifers by diffusion through a water-like diffusion layer of about .06 cm thickness, twice the thickness calculated above. The thickness is twice that calculated above because it includes the supernatant liquid beyond the slime layer. We now calculate the rate of mass diffusing into the disc: AxDxc/z = 8×10^8 x 3×10-6 x C/.06 cm = 40,000 C g/sec, and find that, for this tank size and rotation speed, the transfer rate of organic to the discs is 2/3 as much as needed to absorb the incoming sugar. This is to say that a 50,000 gallon section is too small to reduce the concentration to ln (1) at this speed of disc rotation.

Based on the above calculation, I’m inclined to increase the speed of rotation to .75 rpm. At this speed, the rotifer-slime layer will be 2/3 as thin 0.2 mm, and we expect an equally thinner diffusion barrier in the supernatant. At this faster speed, there is now 3/2 as much diffusion transfer per area because the thinner diffusion barrier, and we can expect a 50,000 liter reactor section to reduce the initial concentration by a fraction of 1/2.718 or C/e. Note that the mass transfer rate to the discs is always proportional to C. If we find that 50,000 gallons of tank reduces the concentration to 1/e, we find that we need 150,000 gallons of reactor to reduce the concentration of sugar from 40 ppm to 2 ppm, the legal target, ln (40/2) = 3. This 150,000 gallons is a remarkably small volume to reduce the sBOD concentration from 40 ppm to 2 ppm (sBOD = soluble biological oxygen demand), and the energy use is small too if the disc bearings are good.

The Holly sewage treatment plant is the only one in Oakland county, MI using the rotating disc contacted technology. It has a flow of 1,000,000 gallons per day, and has a contactor trough that is 215,000 gallons, about what we’d expect though their speed is somewhat higher, over 1 rpm and their input concentration is likely lower than 40 ppm. For the first stage of sewage treatment, the Holly plant use a vertical-draft, trickle-bed reactor. That is they drizzle the sewage-liquids over a slime-coated packing to reduce the sBOD concentration from 200 ppm to before feeding the flow to the rotating discs. My sense of the reason they don’t do the entire extraction with a trickle bed is that the discs use far less energy.

I should also add that the back-part of the disc isn’t totally useless oxygen storage, as it seems from my analysis. Some non-sugar reactions take place in the relatively anoxic environment there and in the liquid at the bottom of the trough. In these regions, iron reacts with phosphate, and nitrate removal takes place. These are other important requirements of sewage treatment.

Robert E. Buxbaum, July 18, 2017. As an exercise, find the volume necessary for a plug flow reactor or a stirred tank reactor (CSTR) to reduce the concentration of sugar from 40 ppm to 2 ppm. Assume 1,000,000 gal per day, an excess of oxygen in these reactors, and a first order reaction with a rate constant of dC/dt = -(0.4/hr)C. At some point in the future I plan to analyze these options, and the trickle bed reactor, too.