Tag Archives: fuel cells

Hydrogen powered trucks and busses

With all the attention to electric cars, I figure that we’re either at the dawn of electric propulsion vehicles or of electric propulsion vehicle hype. Elon Musk’s Tesla motor car company stock is now valued at $59 B, more than GM or Ford despite the company having massive losses and few cars. The valuation, I suspect, has to do with the future and autonomous vehicles. There are many who expect self-driving vehicles will rule the road, but the form is uncertain. In this space, i suspect that hydrogen-battery hybrids make more sense than batteries alone, and that the first large-impact uses will be trucks and busses — vehicles that go long distance on highways.

Factory floor, hydrogen fueling station for plug-power forklifts. Plug FCs reached their 10 millionth refueling this January.

Factory floor, hydrogen fueling station for fuel cell forklifts. This company’s fuel cells have had over 10 million refuelings so far.

Currently there are only two bands of autonomous vehicles available in the US, the Cadillac CT6, a gasoline powered car, and the Tesla. Neither work well except on highways because the number of highway problems are fewer than the number of city problems and only the CT6 allows you to take your hands off the wheel — see review here. To me, being able to take your hand off the wheel is the only real point of autonomous control, and if one can only do this only on the highway, that’s acceptable. Highway driving gets quite tiring after the first hundred miles or so, and any relief is welcome.

Tesla’s battery cars allow for some auto-driving on the highway, but you can’t take your hand off the wheel or the car stops. That battery cars compete at all for highway driving, I suspect, is only possible because the US government highly subsidizes the battery cost. Musk then hides the true cost among the corporate losses. Without this, hydrogen – fuel cell vehicles would be cheaper, I suspect, while providing better range, see my calculation here. Adding to the advantage of hydrogen over batteries, the charge time for hydrogen is much faster. Slow charge times are a real drawback for highway vehicles traveling any significant distances. While hydrogen fuel isn’t cheap — it’s becoming cheaper and is now about double the price of gasoline on a per mile basis. The advantage over gasoline is it provides pollution-free, electric propulsion, and this is well suited to driverless vehicles. Both gasoline and battery vehicles can have odd acceleration issues, e.g. when the gasoline gets wet, or the battery gets run down. And it’s not like there are no hydrogen fueling stations. Hydrogen, fuel-cell power has become a major competitor for fork-lifts, and has recently had its ten million refueling in that application. The same fueling stations that serve the larger fork-lift users could serve the self-driving truck and bus market.

For round the town use, hydrogen vehicles could still use batteries, and the combined vehicle can have very impressive performance. A Dutch company has begun to sell kits to convert Tesla model S autos to combined battery + hydrogen. With these kits, they boast a 620 mile (1000 km) range instead of the normal 240 miles. See the product here.  On the horizon, in the self-driving fuel cell market, Hyundai has debuted the “Nexo” with a range of 370 miles. Showing off the self-driving capability, Nexos were used to carry spectators between venues at the Pyongyang olympics. Japanese competitors, the Toyota Mirai (312 miles) and the Honda Clarity Fuel Cell (366 miles) can be expected to provide similar capabilities.

Cadillac CT6 with supercruise. An antonymous vehicle that you can buy today that allows you to take your hand off the wheel.

Cadillac CT6 with supercruise. An antonymous vehicle that you can buy today that allows you to take your hand off the wheel.

The reason I believe in hydrogen Trucks and Busses more than cars is the difficulty of refueling, Southern California has installed some 36 public hydrogen refueling stations at last count, but that’s too few for most personal car use. Other states have even fewer spots where you can drive up and get hydrogen; Michigan has only two. This does not matter for a commercial truck or bus because they go between fixed depots and these can be fitted with hydrogen dispensers as found for forklifts. It’s possible trucks can even use the same dispensers as the forklifts. If one needs a little extra range one can add a “hydrogen Jerry can” to provide an extra kg of H2 to provide 20-30 miles of emergency range. I do not see electric vehicles working as well because the charge times are so slow, the range so modest, and the electric power needs so large. To charge a 100 kWhr battery in an hour, the charge station would have to have an electric feed of 100 kW, about as much as a typical mall. With 100A, 240 V, the most you can normally get, expect a 4 1/2 hour charge.

The real benefit for hydrogen trucks and busses is autonomy. Being able to run the route without major input from a driver. So why not gasoline, as with the Cadillac? My answer is simplicity. If you want driverless simplicity, you want electric or hydrogen. And only hydrogen provides the long-range, fast fueling to make the product worthwhile.

Robert Buxbaum March 12, 2018. My company, REB Research provides hydrogen purifiers and hydrogen generators.

A very clever hydrogen pump

I’d like to describe a most clever hydrogen pump. I didn’t invent it, but it’s awfully cool. I did try to buy one from “H2 Pump,” a company that is now defunct, and I tried to make one. Perhaps I’ll try again. Here is a diagram.

Electrolytic membrane H2 pump

Electrolytic membrane H2 pump

This pump works as the reverse of of a PEM fuel cell. Hydrogen gas is on both sides of a platinum-coated, proton-conducting membrane — a fuel cell membrane. As in a PEM fuel cell, the platinum splits the hydrogen molecules into H atoms. An electrode removes electrons to form H+ ions on one side of the membrane; the electrons are on the other side of the membrane (the membrane itself is chosen to not conduct electricity). The difference from the fuel cell is that, for the pump you apply a energy (voltage) to drive hydrogen across the membrane, to a higher pressure side; in a fuel cell, the hydrogen goes on its own to form water, and you extract electric energy.

As shown, the design is amazingly simple and efficient. There are no moving parts except for the hydrogen itself. Not only do you pump hydrogen, but you can purify it as well, as most impurities (nitrogen, CO2) will not go through the membrane. Water does permeate the membrane, but for many applications, this isn’t a major impurity. The amount of hydrogen transferred per plate, per Amp-second of current is given by Faraday’s law, an equation that also shows up in my discussion of electrolysis, and of electroplating,

C= zFn.

Here, C is the current in Amp-seconds, z is the number or electrons transferred per molecule, in this case 2, F is Faraday’s constant, 96,800, n is the number of mols transferred.  If only one plate is used, you need 96,800 Amp-seconds per gram of hydrogen, 53.8 Amp hours per mol. Most membranes can operate at well at 1.5 Amp per cm2, suggesting that a 1.1 square-foot membrane (1000 cm2) will move about 1 mol per minute, 22.4 slpm. To reduce the current requirement, though not the membrane area requirement, one typically stacks the membranes. A 100 membrane stack would take 16.1 Amps to pump 22.4 slpm — a very manageable current.

The amount of energy needed per mol is related to the pressure difference via the difference in Gibbs energy, ∆G, at the relevant temperature.

Energy needed per mol is, ideally = ∆G = RT ln Pu/Pd.

where R is the gas constant, 8.34 Joules per mol, T is the absolute temperature, Kelvins (298 for a room temperature process), ln is the natural log, and Pu/Pd is the ratio of the upstream and downstream pressure. We find that, to compress 2 grams of hydrogen (one mol or 22.4 liters) to 100 atm (1500 psi) from 1 atm you need only 11400 Watt seconds of energy (8.34 x 298 x 4.61= 11,400). This is .00317 kW-hrs. This energy costs only 0.03¢ at current electric prices, by far the cheapest power requirement to pump this much hydrogen that I know of. The pump is surprisingly compact and simple, and you get purification of the hydrogen too. What could possibly go wrong? How could the H2 pump company fail?

One thing that I noticed went wrong when I tried building one of these was leakage at the seals. I found it uncommonly hard to make seals that held even 20 psi. I was using 4″ x 4″ membranes so 20 psi was the equivalent of 320 pounds of force. If I were to get 200 psi, there would have been 3200 lbs of force. I could never get the seals to stay put at anything more than 20 psi.

Another problem was the membranes themselves. The membranes I bought were not very strong. I used a wire-mesh backing, and a layer of steel behind that. I figured I could reach maybe 200 psi with this design, but didn’t get there. These low pressures limit the range of pump applications. For many applications,  you’d want 150-200 psi. Still, it’s an awfully cool pump,

Robert E. Buxbaum, February 17, 2017. My company, REB Research, makes hydrogen generators and purifiers. I’ve previously pointed out that hydrogen fuel cell cars have some dramatic advantages over pure battery cars.

I make weapons too, but they don’t work

My company, REB Research, makes items with mostly peaceful uses: hydrogen purifiers and hydrogen generators — used to make silicon chips and to power fuel cells. Still, several of our products have advanced military uses, and these happen to be our most profitable items. The most problematic of these is the core for a hydrogen-powered airplane designed to stay up forever. An airplane like this could be used for peace, e.g. as a cheap, permanent cell tower, or for finding shipwrecks in the middle of the ocean. But it could also be used for spying on US citizens. Ideally I’d like to see my stuff used for desirable ends, but know it’s not always that way.

See, no matter how many times I pull the trigger the damn thing just won't fire! Gahan Wilson;

See what I mean? No matter how many times I pull the trigger the damned thing just won’t fire! Gahan Wilson;

I’d be less bothered if I had more faith that my government will only spy on bad guys, but I don’t. Our politicians seem focused on staying in office, and most presidents of the 20th century have kept enemies lists of those who they’d like to get back at — politics isn’t pretty. I’d be more picky if I could figure out how to sell more stuff, but so far I have not. I thus need the work. I take a sort-of comfort, however, in the fact that the advanced nature of the technology means that my customers keep having troubles getting things to work. My parts work, but the plane has yet to fly as intended. Perhaps, by the time they do get it flying, spying may have changed enough that my stuff will be used only for beneficial service to mankind, or as a stepping stone to more general use. Hydrogen as a fuel makes a lot of sense, especially for airplanes.

Robert E. Buxbaum, June 15, 2015. Here’s a description of my membrane reactors, and a description of my latest fuel cell reformer idea. There are basically two types of engineer; those who make weapons and those who make targets. I make the case here that you want to make targets. Some weapons have only one short day in the sun, e.g. the Gatling gun.

My latest invention: improved fuel cell reformer

Last week, I submitted a provisional patent application for an improved fuel reformer system to allow a fuel cell to operate on ordinary, liquid fuels, e.g. alcohol, gasoline, and JP-8 (diesel). I’m attaching the complete text of the description, below, but since it is not particularly user-friendly, I’d like to add a small, explanatory preface. What I’m proposing is shown in the diagram, following. I send a hydrogen-rich stream plus ordinary fuel and steam to the fuel cell, perhaps with a pre-reformer. My expectation that the fuel cell will not completely convert this material to CO2 and water vapor, even with the pre-reformer. Following the fuel cell, I then use a water-gas shift reactor to convert product CO and H2O to H2 and CO2 to increase the hydrogen content of the stream. I then use a semi-permeable membrane to extract the waste CO2 and water. I recirculate the hydrogen and the rest of the water back to the fuel cell to generate extra power, prevent coking, and promote steam reforming. I calculate the design should be able to operate at, perhaps 0.9 Volt per cell, and should nearly double the energy per gallon of fuel compared to ordinary diesel. Though use of pure hydrogen fuel would give better mileage, this design seems better for some applications. Please find the text following.

Use of a Water-Gas shift reactor and a CO2 extraction membrane to improve fuel utilization in a solid oxide fuel cell system.

Inventor: Dr. Robert E. Buxbaum, REB Research, 12851 Capital St, Oak Park, MI 48237; Patent Pending.

Solid oxide fuel cells (SOFCs) have improved over the last 10 years to the point that they are attractive options for electric power generation in automobiles, airplanes, and auxiliary power supplies. These cells operate at high temperatures and tolerate high concentrations of CO, hydrocarbons and limited concentrations of sulfur (H2S). SOFCs can operate on reformate gas and can perform limited degrees of hydrocarbon reforming too – something that is advantageous from the stand-point of fuel logistics: it’s far easier to transport a small volume of liquid fuel that it is a large volume of H2 gas. The main problem with in-situ reforming is the danger of coking the fuel cell, a problem that gets worse when reforming is attempted with the more–desirable, heavier fuels like gasoline and JP-8. To avoid coking the fuel cell, heavier fuels are typically reforming before hand in a separate reactor, typically by partial oxidation at auto-thermal conditions, a process that typically adds nitrogen and results in the inability to use the natural heat given off by the fuel cell. Steam reforming has been suggested as an option (Chick, 2011) but there is not enough heat released by the fuel cell alone to do it with the normal fuel cycles.

Another source of inefficiency in reformate-powered SOFC systems is basic to the use of carbon-containing fuels: the carbon tends to leave the fuel cell as CO instead of CO2. CO in the exhaust is undesirable from two perspectives: CO is toxic, and quite a bit of energy is wasted when the carbon leaves in this form. Normally, carbon can not leave as CO2 though, since CO is the more stable form at the high temperatures typical of SOFC operation. This patent provides solutions to all these problems through the use of a water-gas shift reactor and a CO2-extraction membrane. Find a drawing of a version of the process following.

RE. Buxbaum invention: A suggested fuel cycle to allow improved fuel reforming with a solid oxide fuel cell

RE. Buxbaum invention: A suggested fuel cycle to allow improved fuel reforming with a solid oxide fuel cell

As depicted in Figure 1, above, the fuel enters, is mixed with steam or partially boiled water, and heated in the rectifying heat exchanger. The hot steam + fuel mix then enters a steam reformer and perhaps a sulfur removal stage. This would be typical steam reforming except for a key difference: the heat for reforming comes (at least in part) from waste heat of the SOFC. Normally speaking there would not be enough heat, but in this system we add a recycle stream of H2-rich gas to the fuel cell. This stream, produced from waste CO in a water-gas shift reactor (the WGS) shown in Figure 1. This additional H2 adds to the heat generated by the SOFC and also adds to the amount of water in the SOFC. The net effect should be to reduce coking in the fuel cell while increasing the output voltage and providing enough heat for steam reforming. At least, that is the thought.

SOFCs differ from proton conducting FCS, e.g. PEM FCs, in that the ion that moves is oxygen, not hydrogen. As a result, water produced in the fuel cell ends up in the hydrogen-rich stream and not in the oxygen stream. Having this additional water in the fuel stream of the SOFC can promote fuel reforming within the FC. This presents a difficulty in exhausting the waste water vapor in that a means must be found to separate it from un-combusted fuel. This is unlike the case with PEM FCs, where the waste water leaves with the exhaust air. Our main solution to exhausting the water is the use of a membrane and perhaps a knockout drum to extract it from un-combusted fuel gases.

Our solution to the problem of carbon leaving the SOFC as CO is to react this CO with waste H2O to convert it to CO2 and additional H2. This is done in a water gas shift reactor, the WGS above. We then extract the CO2 and remaining, unused water through a CO2- specific membrane and we recycle the H2 and unconverted CO back to the SOFC using a low temperature recycle blower. The design above was modified from one in a paper by PNNL; that paper had neither a WGS reactor nor a membrane. As a result it got much worse fuel conversion, and required a high temperature recycle blower.

Heat must be removed from the SOFC output to cool it to a temperature suitable for the WGS reactor. In the design shown, the heat is used to heat the fuel before feeding it to the SOFC – this is done in the Rectifying HX. More heat must be removed before the gas can go to the CO2 extractor membrane; this heat is used to boil water for the steam reforming reaction. Additional heat inputs and exhausts will be needed for startup and load tracking. A solution to temporary heat imbalances is to adjust the voltage at the SOFC. The lower the voltage the more heat will be available to radiate to the steam reformer. At steady state operation, a heat balance suggests we will be able to provide sufficient heat to the steam reformer if we produce electricity at between 0.9 and 1.0 Volts per cell. The WGS reactor allows us to convert virtually all the fuel to water and CO2, with hardly any CO output. This was not possible for any design in the PNNL study cited above.

The drawing above shows water recycle. This is not a necessary part of the cycle. What is necessary is some degree of cooling of the WGS output. Boiling recycle water is shown because it can be a logistic benefit in certain situations, e.g. where you can not remove the necessary CO2 without removing too much of the water in the membrane module, and in mobile military situations, where it’s a benefit to reduce the amount of material that must be carried. If water or fuel must be boiled, it is worthwhile to do so by cooling the output from the WGS reactor. Using this heat saves energy and helps protect the high-selectivity membranes. Cooling also extends the life of the recycle blower and allows the lower-temperature recycle blowers. Ideally the temperature is not lowered so much that water begins to condense. Condensed water tends to disturb gas flow through a membrane module. The gas temperatures necessary to keep water from condensing in the module is about 180°C given typical, expected operating pressures of about 10 atm. The alternative is the use of a water knockout and a pressure reducer to prevent water condensation in membranes operated at lower temperatures, about 50°C.

Extracting the water in a knockout drum separate from the CO2 extraction has the secondary advantage of making it easier to adjust the water content in the fuel-gas stream. The temperature of condensation can then be used to control the water content; alternately, a separate membrane can extract water ahead of the CO2, with water content controlled by adjusting the pressure of the liquid water in the exit stream.

Some description of the membrane is worthwhile at this point since a key aspect of this patent – perhaps the key aspect — is the use of a CO2-extraction membrane. It is this addition to the fuel cycle that allows us to use the WGS reactor effectively to reduce coking and increase efficiency. The first reasonably effective CO2 extraction membranes appeared only about 5 years ago. These are made of silicone polymers like dimethylsiloxane, e.g. the Polaris membrane from MTR Inc. We can hope that better membranes will be developed in the following years, but the Polaris membrane is a reasonably acceptable option and available today, its only major shortcoming being its low operating temperature, about 50°C. Current Polaris membranes show H2-CO2 selectivity about 30 and a CO2 permeance about 1000 Barrers; these permeances suggest that high operating pressures would be desirable, and the preferred operation pressure could be 300 psi (20 atm) or higher. To operate the membrane with a humid gas stream at high pressure and 50°C will require the removal of most of the water upstream of the membrane module. For this, I’ve included a water knockout, or steam trap, shown in Figure 1. I also include a pressure reduction valve before the membrane (shown as an X in Figure 1). The pressure reduction helps prevent water condensation in the membrane modules. Better membranes may be able to operate at higher temperatures where this type of water knockout is not needed.

It seems likely that, no matter what improvements in membrane technology, the membrane will have to operate at pressures above about 6 atm, and likely above about 10 atm (upstream pressure) exhausting CO2 and water vapor to atmosphere. These high pressures are needed because the CO2 partial pressure in the fuel gas leaving the membrane module will have to be significantly higher than the CO2 exhaust pressure. Assuming a CO2 exhaust pressure of 0.7 atm or above and a desired 15% CO2 mol fraction in the fuel gas recycle, we can expect to need a minimum operating pressure of 4.7 atm at the membrane. Higher pressures, like 10 or 20 atm could be even more attractive.

In order to reform a carbon-based fuel, I expect the fuel cell to have to operate at 800°C or higher (Chick, 2011). Most fuels require high temperatures like this for reforming –methanol being a notable exception requiring only modest temperatures. If methanol is the fuel we will still want a rectifying heat exchanger, but it will be possible to put it after the Water-Gas Shift reactor, and it may be desirable for the reformer of this fuel to follow the fuel cell. When reforming sulfur-containing fuels, it is likely that a sulfur removal reactor will be needed. Several designs are available for this; I provide references to two below.

The overall system design I suggest should produce significantly more power per gm of carbon-based feed than the PNNL system (Chick, 2011). The combination of a rectifying heat exchange, a water gas reactor and CO2 extraction membrane recovers chemical energy that would otherwise be lost with the CO and H2 bleed steam. Further, the cooling stage allows the use of a lower temperature recycle pump with a fairly low compression ratio, likely 2 or less. The net result is to lower the pump cost and power drain. The fuel stream, shown in orange, is reheated without the use of a combustion pre-heater, another big advantage. While PNNL (Chick, 2011) has suggested an alternative route to recover most of the chemical energy through the use of a turbine power generator following the fuel cell, this design should have several advantages including greater reliability, and less noise.


1.   A power-producing, fuel cell system including a solid oxide fuel cell (SOFC) where a fuel-containing output stream from the fuel cell goes to a regenerative heat exchanger followed by a water gas shift reactor followed by a membrane means to extract waste gases including carbon dioxide (CO2) formed in said reactor. Said reactor operating a temperatures between 200 and 450°C and the extracted carbon dioxide leaving at near ambient pressure; the non-extracted gases being recycled to the fuel cell.

Main References:

The most relevant reference here is “Solid Oxide Fuel Cell and Power System Development at PNNL” by Larry Chick, Pacific Northwest National Laboratory March 29, 2011: http://www.energy.gov/sites/prod/files/2014/03/f10/apu2011_9_chick.pdf. Also see US patent  8394544. it’s from the same authors and somewhat similar, though not as good and only for methane, a high-hydrogen fuel.

Robert E. Buxbaum, REB Research, May 11, 2015.

Thermodynamics of hydrogen generation

Perhaps the simplest way to make hydrogen is by electrolysis: you run some current through water with a little sulfuric acid or KOH added, and for every two electrons transferred, you get a molecule of hydrogen from one electrode and half a molecule of oxygen from the other.

2 OH- –> 2e- + 1/2 O2 +H2O

2H2O + 2e- –>  H2 + 2OH-

The ratio between amps, seconds and mols of electrons (or hydrogen) is called the Faraday constant, F = 96500; 96500 amp-seconds transfers a mol of electrons. For hydrogen production, you need 2 mols of electrons for each mol of hydrogen, n= 2, so

it = 2F where and i is the current in amps, and t is the time in seconds and n is the number electrons per molecule of desired product. For hydrogen, t = 96500*2/i; in general, t = Fn/i.

96500 is a large number, and it takes a fair amount of time to make any substantial amount of hydrogen by electrolysis. At 1 amp, it takes 96500*2 = 193000 seconds, 2 days, to generate one mol of hydrogen (that’s 2 grams Hor 22.4 liters, enough to fill a garment bag). We can reduce the time by using a higher current, but there are limits. At 25 amps, the maximum current of you can carry with house wiring it takes 2.14 hours to generate 2 grams. (You’ll have to rectify your electricity to DC or you’ll get a nasty H2 /O2 mix called Brown’s gas, While normal H2 isn’t that dangerous, Browns gas is a mix of H2 and O2 and is quite explosive. Here’s an essay I wrote on separating Browns gas).

Electrolysis takes a fair amount of electric energy too; the minimum energy needed to make hydrogen at a given temperature and pressure is called the reversible energy, or the Gibbs free energy ∆G of the reaction. ∆G = ∆H -T∆S, that is, ∆G equals the heat of hydrogen production ∆H – minus an entropy effect, T∆S. Since energy is the product of voltage current and time, Vit = ∆G, where ∆G is the Gibbs free energy measured in Joules and V,i, and t are measured Volts, Amps, and seconds respectively.

Since it = nF, we can rewrite the relationship as: V =∆G/nF for a process that has no every losses, the reversible process. This is the form found in most thermodynamics textbooks; the value of V calculated this way is the minimum voltage to generate hydrogen, and the maximum voltage you could get in a fuel cell putting water back together.

To calculate this voltage, and the power requirements to make hydrogen, we use the Gibbs free energy for water formation found in Wikipedia, copied below (in my day, we used the CRC Handbook of Chemistry and Physics or a table in out P-chem book). You’ll notice that there are two different values for ∆G depending on whether the water is a gas or a liquid, and you’ll notice a small zero at the upper right (∆G°). This shows that the values are for an imaginary standard state: 0°C and 1 atm pressure. You can’t get 1 atm steam at 0°C, it’s an extrapolation; room temperature behavior is pretty similar (i.e: there’s a non- negligible correction that I’ll leave to a reader to send as a comment.)

Liquid H2O formation ∆G° = -237.14
Gaseous H2O formation ∆G° = -228.61

The reversible voltage for creating liquid water in a reversible fuel cell is found to be -237,140/(2 x 96,500) = -1.23V. We find that 1.23 Volts is about the minimum voltage you need to do electrolysis at 0°C because you need liquid water to carry the current; -1.18 V is about the maximum voltage you can get in a fuel cell because they operate at higher temperature with oxygen pressures significantly below 1 atm. (typically). The minus sign is kept for accounting; it differentiates the power out case (fuel cells) from power in (electrolysis).

Most electrolysis is done at voltages above about 1.48 V. Just as fuel cells always give off heat (they are exothermic), electrolysis will absorb heat if run reversibly. That is, electrolysis can act as a refrigerator if run reversibly, but it is not a very good refrigerator (the refrigerator ability is tied up in the entropy term mentioned above). To do electrolysis at fast rates, people give up on refrigeration and provide all the energy needed in the electricity. In this case, ∆H = nFV’ where ∆H is the enthalpy of water formation, and V’ is this higher voltage for electrolysis. Based on the enthalpy of liquid water formation,  −285.8 kJ/mol we find V’ = 1.48 V at zero degrees. At this voltage no net heat is given off or absorbed. The figure below shows that you can use less voltage, but not if you want to make hydrogen fast:

Electrolyzer performance; C-Pt catalyst on a thin, nafion membrane

Electrolyzer performance; C-Pt catalyst on a thin, nafion membrane

If you figure out the energy that this voltage and amperage represents (shown below) you’re likely to come to a conclusion I came to several years ago: that it’s far better to generate large amounts of hydrogen chemically, ideally from membrane reactors like my company makes.

The electric power to make each 2 grams of hydrogen at 1.5 volts is 1.5 V x 193000 Amp-s = 289,500 J = .080 kWh’s, or 0.9¢ at current rates, but filling a car takes 20 kg, or 10,000 times as much. That’s 800 kW-hr, or $90 at current rates. The electricity is twice as expensive as current gasoline and the infrastructure cost is staggering too: a station that fuels ten cars per hour would require 8 MW, far more power than any normal distributor could provide.

By contrast, methanol costs about 2/3 as much as gasoline, and it’s easy to deliver many giga-joules of methanol energy to a gas station by truck. Our company’s membrane reactor hydrogen generators would convert methanol-water to hydrogen efficiently by the reaction CH3OH + H2O –> 3H2 + CO2. This is not to say that electrolysis isn’t worthwhile for lower demand applications: see, e.g.: gas chromatography, and electric generator cooling. Here’s how membrane reactors work.

R. E. Buxbaum July 1, 2013; Those who want to show off, should post the temperature and pressure corrections to my calculations for the reversible voltage of typical fuel cells and electrolysis.

My steam-operated, high pressure pump

Here’s a miniature version of a duplex pump that we made 2-3 years ago at REB Research as a way to pump fuel into hydrogen generators for use with fuel cells. The design is from the 1800s. It was used on tank locomotives and steamboats to pump water into the boiler using only the pressure in the boiler itself. This seems like magic, but isn’t. There is no rotation, but linear motion in a steam piston of larger diameter pushes a liquid pump piston with a smaller diameter. Each piston travels the same distance, but there is more volume in the steam cylinder. The work from the steam piston is greater: W = ∫PdV; energy is conserved, and the liquid is pumped to higher pressure than the driving steam (neat!).

The following is a still photo. Click on the YouTube link to see the steam pump in action. It has over 4000 views!

Mini duplex pump. Provides high pressure water from steam power. Amini version of a classic of the 1800s Coffee cup and pen shown for scale.

Mini duplex pump. Provides high pressure water from steam power. A mini version of a classic of the 1800s Coffee cup and pen shown for scale.

You can get the bronze casting and the plans for this pump from Stanley co (England). Any talented machinist should be able to do the rest. I hired an Amish craftsman in Ohio. Maurice Perlman did the final fit work in our shop.

Our standard line of hydrogen generators still use electricity to pump the methanol-water. Even our latest generators are meant for nom-mobile applications where electricity is awfully convenient and cheap. This pump was intended for a future customer who would need to generate hydrogen to make electricity for remote and mobile applications. Even our non-mobile hydrogen is a better way to power cars than batteries, but making it mobile has advantages. Another advance would be to heat the reactors by burning the waste gas (I’ve been working on that too, and have filed a patent). Sometimes you have to build things ahead of finding a customer — and this pump was awfully cool.

Hydrogen versus Battery Power

There are two major green energy choices that people are considering to power small-to-medium size, mobile applications like cars and next generation, drone airplanes: rechargeable, lithium-ion batteries and hydrogen /fuel cells. Neither choice is an energy source as such, but rather a clean energy carrier. That is, batteries and fuel cells are ways to store and concentrate energy from other sources, like solar or nuclear plants for use on the mobile platform.

Of these two, rechargeable batteries are the more familiar: they are used in computers, cell phones, automobiles, and the ill-fated, Boeing Dreamliner. Fuel cells are less familiar but not totally new: they are used to power most submarines and spy-planes, and find public use in the occasional, ‘educational’ toy. Fuel cells provided electricity for the last 30 years of space missions, and continue to power the international space station when the station is in the dark of night (about half the time). Batteries have low energy density (energy per mass or volume) but charging them is cheap and easy. Home electricity costs about 12¢/kWhr and is available in every home and shop. A cheap transformer and rectifier is all you needed to turn the alternating current electricity into DC to recharge a battery virtually anywhere. If not for the cost and weight of the batteries, the time to charge the battery (usually and hour or two), batteries would be the obvious option.

Two obvious problems with batteries are the low speed of charge and the annoyance of having to change the battery every 500 charges or so. If one runs an EV battery 3/4 of the way down and charges it every week, the battery will last 8 years. Further, battery charging takes 1-2 hours. These numbers are acceptable if you use the car only occasionally, but they get more annoying the more you use the car. By contrast, the tanks used to hold gasoline or hydrogen fill in a matter of minutes and last for decades or many thousands of fill-cycles.

Another problem with batteries is range. The weight-energy density of batteries is about 1/20 that of gasoline and about 1/10 that of hydrogen, and this affects range. While gasoline stores about 2.5 kWhr/kg including the weight of the gas tank, current Li-Ion batteries store far less than this, about 0.15 kWhr/kg. The energy density of hydrogen gas is nearly that of gasoline when the efficiency effect is included. A 100 kg of hydrogen tank at 10,000 psi will hold 8 kg of hydrogen, or enough to travel about 350 miles in a fuel-cell car. This is about as far as a gasoline car goes carrying 60 kg of tank + gasoline. This seems acceptable for long range and short-range travel, while the travel range with eVs is more limited, and will likely remain that way, see below.

The volumetric energy density of compressed hydrogen/ fuel cell systems is higher than for any battery scenario. And hydrogen tanks are far cheaper than batteries. From Battery University. http://batteryuniversity.com/learn/article/will_the_fuel_cell_have_a_second_life

The volumetric energy density of compressed hydrogen/ fuel cell systems is higher than for any battery scenario. And hydrogen tanks are far cheaper than batteries. From Battery University. http://batteryuniversity.com/learn/article/will_the_fuel_cell_have_a_second_life

Cost is perhaps the least understood problem with batteries. While electricity is cheap (cheaper than gasoline) battery power is expensive because of the high cost and limited life of batteries. Lithium-Ion batteries cost about $2000/kWhr, and give an effective 500 charge/discharge cycles; their physical life can be extended by not fully charging them, but it’s the same 500 cycles. The effective cost of the battery is thus $4/kWhr (The battery university site calculates $24/kWhr, but that seems overly pessimistic). Combined with the cost of electricity, and the losses in charging, the net cost of Li-Ion battery power is about $4.18/kWhr, several times the price of gasoline, even including the low efficiency of gasoline engines.

Hydrogen prices are much lower than battery prices, and nearly as low as gasoline, when you add in the effect of the high efficiency fuel cell engine. Hydrogen can be made on-site and compressed to 10,000 psi for less cost than gasoline, and certainly less cost than battery power. If one makes hydrogen by electrolysis of water, the cost is approximately 24¢/kWhr including the cost of the electrolysis unit.While the hydrogen tank is more expensive than a gasoline tank, it is much cheaper than a battery because the technology is simpler. Fuel cells are expensive though, and only about 50% efficient. As a result, the as-used cost of electrolysis hydrogen in a fuel cell car is about 48¢/kWhr. That’s far cheaper than battery power, but still not cheap enough to encourage the sale of FC vehicles with the current technology.

My company, REB Research provides another option for hydrogen generation: The use of a membrane reactor to make it from cheap, easy to transport liquids like methanol. Our technology can be used to make hydrogen either at the station or on-board the car. The cost of hydrogen made this way is far cheaper than from electrolysis because most of the energy comes from the methanol, and this energy is cheaper than electricity.

In our membrane reactors methanol-water (65-75% Methanol), is compressed to 350 psi, heated to 350°C, and reacted to produce hydrogen that is purified as it is made. CH3OH + H2O –> 3H2 + CO2, with the hydrogen extracted through a membrane within the reactor.

The hydrogen can be compressed to 10,000 psi and stored in a tank on board an automobile or airplane, or one can choose to run this process on-board the vehicle and generate it from liquid fuel as-needed. On-board generation provides a saving of weight, cost, and safety since you can carry methanol-water easily in a cheap tank at low pressure. The energy density of methanol-water is about 1/2 that of gasoline, but the fuel cell is about twice as efficient as a gasoline engine making the overall volumetric energy density about the same. Not including the fuel cell, the cost of energy made this way is somewhat lower than the cost of gasoline, about 25¢/kWhr; since methanol is cheaper than gasoline on a per-energy basis. Methanol is made from natural gas, coal, or trees — non-imported, low cost sources. And, best yet, trees are renewable.

Hydrogen Cylinders versus Hydrogen Generators for Gas Chromatography

Hydrogen is an excellent cover gas for furnace brazing and electronic manufacture; it’s used as a carrier gas for gas chromatography or as a flame-detector gas, and it’s a generally interesting gas for chemical formation and alternate energy. If you are working in one of these fields you’ve got two maing options for sources of hydrogen: hydrogen cylinders and hydrogen generators with the maid difference being cost. Cylinder hydrogen is the more-commonly used for small demand applications, often aided by palladium membrane hydrogen purifiers if purity is an issue. Hydrogen generators are more generally used for larger -demand applications because they provide added safety, conveinience, and long-term savings. Having nothing better to do this evening, I thought I’d go through the benefits and drawbacks of each as applies to gas chromatography.

Point of use Cylinder Hydrogen Is Simple and Allows Easy Monitoring and Control. The smallest laboratories, those with one or two gas chromatographs, generally use a single hydrogen cylinder for each GC. This is called “point of use.” Each cylinder is typically belted to a wall and often fed into some type of hydrogen purifier (a getter or membrane). From there it supplies carrier and/or fuel gas to its application. When a cylinder is empty, the application is stopped, and the purifier is often stopped too (not necessary with membranes). A new cylinder switched in and, after a short break in period, the process is restarted. The biggest advantage here is simplicity; another advantage is the ease of pressure control and monitoring. Pressure is controlled by a regulator located right at the gas chromatograph. You can always check it and adjust it as needed. A main disadvantage is that the process has to stop whenever a cylinder needs switching.

Multi-cylinder Systems Provide Fewer interruptions in Gas Supply. Larger laboratories with multiple GCs tend to use multiple hydrogen cylinders with complex switchover systems, or hydrogen generators. When multiple cylinders are used, they are typically racked together and connected to a manifold and a purifier. Tanks are emptied in series so that there is no disruption. When each take empties, the hydrogen tank is switched automatically or manually to maintain the flow and pressure. One problem with this is that the pressure does not typically stay constant as the cylinders switch since each has its own regulator and all will be set slightly differently. As the hydrogen cylinders have separate regulators, there can be pressure changes during cylinder switches; and, as the packs are located further from the GC there is a tendency for the pressure to vary as the flow varies.

Another issue with cylinder packs is that purity can suffer as there is more room for leaks and degassing in the line. This can be solved by point-of-use purifiers installed in the hydrogen lines just prior to the GC or other application.

A final issue with cylinder packs is safety: with so many cylinders, there is a lot of potential for really disastrous leaks and fires: one leak can empty many cylinders and there is no likely room that is big enough to disperse that hydrogen quickly enough. The potential is made greater since the cylinder packs are often located at a distance from where the experiments (and people) are. Maintenence becomes an issue too since the manifolds and automatic switches become complicated quickly. The hydrogen is under great pressure, and even if fires are avoided, a pressure release can be deadly. Manifolds are complex enough that they generally require a trained technician to trouble-shoot any problems; it can also take an expert to handle multiple cylinder changes to minimize contamination and pressure variation.

A main advantage of hydrogen generators is that it avoids cylinder changes; it’s also somewhat safer and saves money for larger users. Changing cylinders can be difficult and time consuming as mentioned above; hydrogen bottles must be monitored to check that gas does not run out, and you’ve got to make sure that cylinders don’t fall (especially on you), and that leaks don’t arise, and that explosive hydrogen does not escape. Much of this is alleviated with a hydrogen generator. One can have a very large tank of water or methanol — far larger than any reasonably safe gas tank, so running out is less of a problem. In some systems, the water can come from municipal pipes so there is almost no chance of running out.

Safety is provided by limiting the output of the generator to the amount the room will vent. Thus, a room with 100 ft3 of air circulation can host a hydrogen generator of up to 4.5 scfh output (about 2 slpm) with no fear of reaching explosive limits. Further, unlike cylinders, most hydrogen generators can be fitted with alarm features to alert the user to operating problems, and most have automatic shut down capabilities that trigger if the unit malfunctions. All of these factors contribute greatly to the overall safety of in the lab.

Another advantage is that methanol and water are a lot cheaper than hydrogen and there is no switchover system, cylinder rental, and less manpower need (cylinder rental cost is often greater than the cost of gas). The first cost of the generator is typically on the order of $10,000, similar to the cost of a manifold switchover system and a hydrogen purifier.

The Source Options for High purity hydrogen generators are electrolysis and methanol reformer generators. These are virtually the only continuous use hydrogen generators. They are both available in outputs from 150 ccm to 50 slpm, i.e. enough to supply single or multiple GC’s (also used for modest-sized braze furnaces, IC tool production, and laboratory-scale fuel cell testing). All hydrogen generators provide continuous hydrogen outputs as feed water or methanol is provided upstream of the hydrogen output, and they all offer safety advantages. They all take less space than the cylinders and avoid the leaks and impurity spikes that arise when cylinders are switched.

In Electrolytic Hydrogen generators Purified water, either purchased separately, or purified on-site is mixed with an electrolyte, generally KOH, and converted to hydrogen and oxygen by the electrolytic reaction H2O –> H2 + ½ O2.  As the hydrogen produced is generally “wet”, containing water vapor, the hydrogen is then purified by use of a desiccant, or by passage through a metal membrane purifier. Desiccants are cheaper, but the gas is at best 99.9% pure, good enough to feed FIDs, but not good enough to be used as a carrier gas, or for chemical production. Over time desiccants wear out; they require constant monitoring and changing as they become filled with water vapor. Often electrolytic hydrogen generators also require the addition of a caustic electrolyte solution as caustic can leak out, or leave by corrosion mechanisms.

In Reformer-based hydrogen generators a methanol-water mix is pumped to about 300 psi and heated to about 350 °C. It is then sent over a catalyst where it is converted to a hydrogen-containing gas-mix by the reaction CH3OH + H2O –> 3H2 + CO2. Pure hydrogen is extracted from the gas mix by passing it through a membrane, either within the reactor (a membrane reactor), or by use of a membrane purifier external to the reactor.

Both systems provide continuous gas supply of high purity gas. The need to change and store cylinders is eliminated, saving time and cost. One adds water or methanol-water as needed, and hydrogen is produced as long as there is electricity in the lab. Eliminating cylinder changeouts reduces downtime and minimizes the potential for air contamination.

Consistent gas purity is enhanced further because hydrogen generators often contain metal membranes. Hydrogen is delivered at  99.9999% purity, and remains constant over time. This consistent purity provides reliability for the GC system. Electrolysis systems with only a desiccant to remove water vapor from the hydrogen should be used only where high hydrogen purity less important than high hydrogen pressure. Even with a fresh cartridge, desiccant-purified gas never exceeds 99.9% and this purity decreases with time as the desiccant wears out; if purity is an issue add a membrane purifier, or use a methanol reformer.

Single cylinders are quite compact; where many cylinders would be needed space saving favors use of a generator. The relatively small size of hydrogen generators allows them to be conveniently located on the lab bench; they consume a lot of valuable lab and storage space than multiple cylinders. Related to space savings is zoning. Once you have many cylinders, you begin to run into zoning issues regarding how close your laboratory can be to bus stops, churches, and children. Zoning can limit distances to 500 feet, or 1/10 mile.

Short term cost savings favor cylinders; long term and large outputs favor generators. Hydrogen in cylinders is fairly expensive, the more so when cylinder rental is included. In Detroit, where we are, hydrogen costs about $70 each cylinder low low-purity gas, or $200 for high purity gas. Each cylinder contains 135 scf of gas. If you use 1/10 cylinder per day, you will find you’re spending about $7,300 per year on hydrogen gas, with another $1000 spent on cylinder rental and delivery. This is about the cost of a comparable hydrogen generator plus the water or methanol and electricity run it. If you use significantly less hydrogen you save money with cylinders, if you use more there is significant savings with a generator.

Most hydrogen generators have delivery pressure limitations compared to cylinders. Cylinders have no problem supplying hydrogen at 200 psi or greater pressures. By contrast, generators are limited to only the 60-150 psig range only. This pressure limitation is not likely to be a problem, even for GCs that need higher pressure gas or when the generator must be located far from the  instruments, but you have to be aware of the issue when buying the generator. Electrolysis systems that use caustic provide the highest pressures, but they tend to be the most expensive, and least safe as the operate hot and caustic can drip out. Fuel cell generators and reformers provide lower pressure gas (90 psi maximum, typically), but they are safer. In general generators should be located close to the instruments to minimize supply line pressure drop. If necessary it can pay to use cylinders and generators or several generators to provide a range of delivery pressures and a shorter distance between the hydrogen generator and the application.

Click here for the prices of REB Research hydrogen generators. By comparison, I’ve attached prices for electrolysis-based hydrogen generators here (it’s 2007 data; please check the company yourself for current prices). Finally, the price of membrane purifiers is listed here.

Maintenance required for optimal performance. Often electrolytic hydrogen generators require the addition of a caustic electrolyte solution; desiccant purified gas will require the monitoring and changing of desiccant cartridges to remove residual moisture from the hydrogen. Palladium membrane purifiers systems, and reformer systems need replacement thermocouples and heaters every few years. Understanding the required operating and maintenance procedures is an important part of making an informed decision.


Cylinder hydrogen supplies are the simplest sources for labs but present a safety, cost, and handling concerns, particularly associated with cylinder change-outs. Generators tend to be more up-front expensive than cylinders but offer safety benefits as well as benefits of continuous supply and consistent purity. They are particularly attractive alternative for larger labs where large hydrogen supply can present larger safety risks, and larger operating costs.