# magnetic separation of air

As some of you will know, oxygen is paramagnetic, attracted slightly by a magnet. Oxygen’s paramagnetism is due to the two unpaired electrons in every O2 molecule. Oxygen has a triple-bond structure as discussed here (much of the chemistry you were taught is wrong). Virtually every other common gas is diamagnetic, repelled by a magnet. These include nitrogen, water, CO2, and argon — all diamagnetic. As a result, you can do a reasonable job of extracting oxygen from air by the use of a magnet. This is awfully cool, and could make for a good science fair project, if anyone is of a mind.

But first some math, or physics, if you like. To a good approximation the magnetization of a material, M = CH/T where M is magnetization, H is magnetic field strength, C is the Curie constant for the material, and T is absolute temperature.

Ignoring for now, the difference between entropy and internal energy, but thinking only in terms of work derived by lowering a magnet towards a volume of gas, we can say that the work extracted, and thus the decrease in energy of the magnetic gas is ∫∫HdM  = MH/2. At constant temperature and pressure, we can say ∆G = -CH2/2T.

With a neodymium magnet, you should be able to get about 50 Tesla, or 40,000 ampere meters At 20°C, the per-mol, magnetic susceptibility of oxygen is 1.34×10−6  This suggests that the Curie constant is 1.34 x293 = 3.93 ×10−4  At 20°C, this energy difference is 1072 J/mole. = RT ln ß where ß is the concentration ratio between the O2 content of the magnetized and un-magnetized gas.

From the above, we find that, at room temperature, 298K ß = 1.6, and thus that the maximum oxygen concentration you’re likely to get is about 1.6 x 21% = 33%. It’s slightly more than this due to nitrogen’s diamagnetism, but this effect is too small the matter. What does matter is that 33% O2 is a good amount for a variety of medical uses.

I show below my simple design for a magnetic O2 concentrator. The dotted line is a permeable membrane of no selectivity – with a little O2 permeability the design will work better. All you need is a blower or pump. A coffee filter could serve as a membrane.

This design is as simple as the standard membrane-based O2 concentrator – those based on semi-permeable membranes, but this design should require less pressure differential — just enough to overcome the magnet. Less pressure means the blower should be smaller, and less noisy, with less energy use.  I figure this could be really convenient for people who need portable oxygen. With several stages and low temperature operation, this design could have commercial use.

On the theoretical end, an interesting thing I find concerns the effect on the entropy of the magnetic oxygen. (Please ignore this paragraph if you have not learned statistical thermodynamics.) While you might imagine that magnetization decreases entropy, other-things being equal because the molecules are somewhat aligned with the field, temperature and pressure being fixed, I’ve come to realize that entropy is likely higher. A sea of semi-aligned molecules will have a slightly higher heat capacity than nonaligned molecules because the vibrational Cp is higher, other things being equal. Thus, unless I’m wrong, the temperature of the gas will be slightly lower in the magnetic area than in the non-magnetic field area. Temperature and pressure are not the same within the separator as out, by the way; the blower is something of a compressor, though a much less-energy intense one than used for most air separators. Because of the blower, both the magnetic and the non magnetic air will be slightly warmer than in the surround (blower Work = ∆T/Cp). This heat will be mostly lost when the gas leaves the system, that is when it flows to lower pressure, both gas streams will be, essentially at room temperature. Again, this is not the case with the classic membrane-based oxygen concentrators — there the nitrogen-rich stream is notably warm.

Robert E. Buxbaum, October 11, 2017. I find thermodynamics wonderful, both as science and as an analog for society.

# How Tesla invented, I think, Tesla coils and wireless chargers.

I think I know how Tesla invented his high frequency devices, and thought I’d show you, while also explaining the operation of some devices that develop from in. Even if I’m wrong in historical terms, at least you should come to understand some of his devices, and something of the invention process. Either can be the start of a great science fair project.

The start of Tesla’s invention process, I think, was a visual similarity– I’m guessing he noticed that the physics symbol for a spring was the same as for an electrical, induction coil, as shown at left. A normal person would notice the similarity, and perhaps think about it for a few seconds, get no where, and think of something else. If he or she had a math background — necessary to do most any science — they might look at the relevant equations and notice that they’re different. The equation describing the force of a spring is F = -k x  (I’ll define these letters in the bottom paragraph). The equation describing the voltage in an induction coil is not very similar-looking at first glance, V = L di/dt.  But there is a key similarity that could appeal to some math aficionados: both equations are linear. A linear equation is one where, if you double one side you double the other. Thus, if you double F, you double x, and if you double V, you double dI/dt, and that’s a significant behavior; the equation z= atis not linear, see the difference?

Another linear equation is the key equation for the motion for a mass, Newton’s second law, F = ma = m d2x/dt2. This equation is quite complicated looking, since the latter term is a second-derivative, but it is linear, and a mass is the likely thing for a spring to act upon. Yet another linear equation can be used to relate current to the voltage across a capacitor: V= -1/C ∫idt. At first glance, this equation looks quite different from the others since it involves an integral. But Nicola Tesla did more than a first glance. Perhaps he knew that linear systems tend to show resonance — vibrations at a fixed frequency. Or perhaps that insight came later.

And Tesla saw something else, I imagine, something even less obvious, except in hindsight. If you take the derivative of the two electrical equations, you get dV/dt = L d2i/dt2, and dV/dt = -1/C i . These equations are the same as for the spring and mass, just replace F and x by dV/dt and i. That the derivative of the integral is the thing itself is something I demonstrate here. At this point it becomes clear that a capacitor-coil system will show the same sort of natural resonance effects as shown by a spring and mass system, or by a child’s swing, or by a bouncy bridge. Tesla would have known, like anyone who’s taken college-level physics, that a small input at the right, resonant frequency will excite such systems to great swings. For a mass and spring,

Basic Tesla coil. A switch set off by magnetization of the iron core insures resonant frequency operation.

resonant frequency = (1/2π) √k/m,

Children can make a swing go quite high, just by pumping at the right frequency. Similarly, it should be possible to excite a coil-capacitor system to higher and higher voltages if you can find a way to excite long enough at the right frequency. Tesla would have looked for a way to do this with a coil capacitor system, and after a while of trying and thinking, he seems to have found the circuit shown at right, with a spark gap to impress visitors and keep the voltages from getting to far out of hand. The resonant frequency for this system is 1/(2π√LC), an equation form that is similar to the above. The voltage swings should grow until limited by resistance in the wires, or by the radiation of power into space. The fact that significant power is radiated into space will be used as the basis for wireless phone chargers, but more on that later. For now, you might wish to note that power radiation is proportional to dV/dt.

A more -modern version of the above excited by AC current. In this version, you achieve resonance by adjusting the coil, capacitor and resistance to match the forcing frequency.

The device above provides an early, simple way to excite a coil -capacitor system. It’s designed for use with a battery or other DC power source. There’s an electromagnetic switch to provide resonance with any capacitor and coil pair. An alternative, more modern device is shown at left. It  achieves resonance too without the switch through the use of input AC power, but you have to match the AC frequency to the resonant frequency of the coil and capacitor. If wall current is used, 60 cps, the coil and capacitor must be chosen so that  1/(2π√LC) = 60 cps. Both versions are called Tesla coils and either can be set up to produce very large sparks (sparks make for a great science fair project — you need to put a spark gap across the capacitor, or better yet use the coil as the low-voltage part of a transformer.

Another use of this circuit is as a transmitter of power into space. The coil becomes the transmission antenna, and you have to set up a similar device as a receiver, see picture at right. The black thing at left of the picture is the capacitor. One has to make sure that the coil-capacitor pair is tuned to the same frequency as the transmitter. One also needs to add a rectifier, the rectifier chosen here is designated 1N4007. This, fairly standard-size rectifier allows you to sip DC power to the battery, without fear that the battery will discharge on every cycle. That’s all the science you need to charge an iPhone without having to plug it in. Designing one of these is a good science fair project, especially if you can improve on the charging distance. Why should you have to put your iPhone right on top of the transmitter battery. Why not allow continuous charging anywhere in your home. Tesla was working on long-distance power transmission till the end of his life. What modifications would that require?

Symbols used above: a = acceleration = d2x/dt2, C= capacitance of the capacitor, dV/dt = the rate of change of voltage with time, F = force, i = current, k = stiffness of the spring, L= inductance of the coil, m = mass of the weight, t= time, V= voltage, x = distance of the mass from its rest point.

Robert Buxbaum, October 2, 2017.

# Heraclitus and Parmenides time joke

From Existential Comics; Parmenides believed that nothing changed, nor could it.

For those who don’t remember, Heraclitus believed that change was the essence of life, while  Parmenides believed that nothing ever changes. It’s a debate that exists to this day in physics, and also in religion (there is nothing new under the sun, etc.). In science, the view that no real change is possible is founded in Schrödinger’s wave view of quantum mechanics.

Schrödinger’s wave equation, time dependent.

In Schrödinger’s wave description of reality, every object or particle is considered a wave of probability. What appears to us as motion is nothing more than the wave oscillating back and forth in its potential field. Nothing has a position or velocity, quite, only random interactions with other waves, and all of these are reversible. Because of the time reversibility of the equation, long-term, the system is conservative. The wave returns to where it was, and no entropy is created, long-term. Anything that happens will happen again, in reverse. See here for more on Schrödinger waves.

Thermodynamics is in stark contradiction to this quantum view. To thermodynamics, and to common observation, entropy goes ever upward, and nothing is reversible without outside intervention. Things break but don’t fix themselves. It’s this entropy increase that tells you that you are going forward in time. You know that time is going forward if you can, at will, drop an ice-cube into hot tea to produce lukewarm, diluted tea. If you can do the reverse, time is going backward. It’s a problem that besets Dr. Who, but few others.

One way that I’ve seen to get out of the general problem of quantum time is to assume the observed universe is a black hole or some other closed system, and take it as an issue of reference frame. As seen from the outside of a black hole (or a closed system without observation) time stops and nothing changes. Within a black hole or closed system, there is constant observation, and there is time and change. It’s not a great way out of the contradiction, but it’s the best I know of.

Predestination makes a certain physics and religious sense, it just doesn’t match personal experience very well.

The religion version of this problem is as follows: God, in most religions, has fore-knowledge. That is, He knows what will happen, and that presumes we have no free will. The problem with that is, without free-will, there can be no fair judgment, no right or wrong. There are a few ways out of this, and these lie behind many of the religious splits of the 1700s. A lot of the humor of Calvin and Hobbes comics comes because Calvin is a Calvinist, convinced of fatalistic predestination; Hobbes believes in free will. Most religions take a position somewhere in-between, but all have their problems.

Applying the black-hole model to God gives the following, alternative answer, one that isn’t very satisfying IMHO, but at least it matches physics. One might assume predestination for a God that is outside the universe — He sees only an unchanging system, while we, inside see time and change and free will. One of the problems with this is it posits a distant creator who cares little for us and sees none of the details. A more positive view of time appears in Dr. Who. For Dr. Who time is fluid, with some fixed points. Here’s my view of Dr. Who’s physics.  Unfortunately, Dr. Who is fiction: attractive, but without basis. Time, as it were, is an issue for the ages.

Robert Buxbaum, Philosophical musings, Friday afternoon, June 30, 2017.

# A clever, sorption-based, hydrogen pump

Hydrogen-power ed fuel cells provide a lot of advantages over batteries, e.g. for drones and extended range vehicles, but part of the challenge is compressing the hydrogen. On solution I’d proposed is a larger version of this steam-powered compressor, another is a membrane reactor hydrogen generator, and a few weeks ago, I wrote about an other clever innovative solutions: an electrochemical hydrogen pump. It was a fuel cell operating backwards, pumping was very efficient and compact, but the pressure was borne by the fuel cell membranes, so the pump is only suitable at low pressure differentials. I’d now like to describe a different, very clever hydrogen pump, one that operates by metallic hydride sorption and provides very high pressure.

Hydride sorption -desorption pressures vs temperature, from Dhinesh et al.

The basic metal hydride reaction is M + nH2 <–> MH2n. Where M is a metal or metallic alloy. While most metals will undergo this reaction at some appropriate temperature and pressure, the materials of interest are exothermic hydrides that undergo a nearly stoichiometric absorption or desorption reaction at temperatures near 1 atm, temperatures near room temperature. The plot at right presents the plateau pressure for hydrogen absorption/ desorption in several, common metal hydrides. The slope is proportionals to the heat of sorption. There is a red box shown for the candidates that sorb or desorb between 1 and 10 atmospheres and 25 and 100 °C. Sorbants whose lines pass through that box are good candidates for pump use. The ones with a high slope (high heat of sorption) in particular, if you want a convenient source of very high pressure.

To me, NaAlH4 is among the best of the materials, and certainly serves as a good example for how the pump works. The basic reaction, in this case is:

NaAl + 2H2 <–> NaAlH4

The line for this reaction crosses the 1 atm red line at about 30°C suggesting that each mol of NaAl material will absorb 2 mols of hydrogen at 1 am and normal room temperatures: 20-30°C. Assume the pump contains 100 g of NaAl (2.0 mols). We can expect it will 4 mols of hydrogen gas, about 90 liters at this temperature. If this material in now heated to 250°C, it will desorb most of the hydrogen (80% perhaps, 72 liters) at 100 atm, or 1500 psi. This is a remarkably high pressure boost; 1500 psi hydrogen is suitable for use filling the high pressure tank of a hydrogen-based, fuel cell car.

But there is a problem: it will take 2-3 hours to cycle the sober; the absorb hydrogen at low pressure, heat, desorb and cycle back to low temperature. If you only can pump 72 liters in 2-3 hours, this will not be an effective pump for automobiles. Even with several cells operating in parallel, it will be hard to fill the fuel tank of a fuel-cell car. The output is enough for electric generators, or for the small gas tank of a fuel cell drone, or for augmenting the mpg of gasoline automobiles. If one is interested in these materials, my company, REB Research will supply them in research quantities.

Properties of Metal Hydride materials; Dhanesh Chandra,* Wen-Ming Chien and Anjali Talekar, Material Matters, Volume 6 Article 2

At this point, I can imagine you saying that there is a simple way to make up for the low output of a pump with 100g of sorbent: use more, perhaps 10 kg distributed over 100 cells. The alloys don’t cost much in bulk, see chart above (they’re a lot more expensive in small quantities). With 100 times more sorbent, you’ll pump 100 times faster, enough for a fairly large hydrogen generator, like this one from REB. This will work, but you don’t get economies of scale. With standard, mechanical pumps give you a decent economy of scale — it costs 3-4 times as much for each 10 times increase in output. For this reason, the hydride sorption pump, though clever appears to be destined for low volume applications. Though low volume might involve hundreds of kg of sorbent, at some larger value, you’re going to want to use a mechanical pump.

Other uses of these materials include hydrogen storageremoval of hydrogen from a volume, e.g. so it does not mess up electronics, or for vacuum pumping from a futon reactor. I have sold niobium screws for hydrogen sorption in electronic packages, and my company provides chemical sorbers for hydrogen removal from air. For more of our products, visit www.rebresearch.com/catalog.html

Robert Buxbaum, May 26, 2017.

# Future airplane catapults may not be electric

President Trump got into Hot Water with the Navy this week for his suggestion that they should go “back to god-damn steam” for their airplane catapults as a cure for cost over-runs and delays with the Navy’s aircraft carriers. The Navy had chosen to go to a more modern catapult called EMALS (electromagnetic, aircraft launch system) based on a traveling coil and electromagnetic pulses. This EMAL system has cost \$5 Billion in cost over-runs, has added 3 years to the program, and still doesn’t work well. In response to the president’s suggestion (explosion), the Navy did what the rest of Washington has done: blame Trump’s ignorance, e.g. here, in the Navy Times. Still, for what it’s worth, I think Trump’s idea has merit, especially if I can modify it a bit to suggest high pressure air (pneumatics) instead of high pressure steam.

Tests of the navy EMALS, notice that some launches go further than others; the problem is electronics, supposedly.

If you want to launch a 50,000 lb jet fighter at 5 g acceleration, you need to apply 250,000 lbs of force uniformly throughout the launch. For pneumatics, all that takes is 250 psi steam or air, and a 1000 square inch piston, about 3 feet in diameter. This is a very modest pressure and a quite modest size piston. A 50,000 lb object accelerated this way, will reach launch speed (130 mph) in 1.2 seconds. It’s very hard to get such fast or uniform acceleration with an electromagnetic coil since the motion of the coil always produces a back voltage. The electromagnetic pulses can be adjusted to counter this, but it’s not all that easy, as the Navy tests show. You have to know the speed and position of the airplane precisely to get it right, and have to adjust the firing of the pushing coils accordingly. There is no guarantee of smooth acceleration like you get with a piston, and the EMALS control circuit will always be vulnerable to electromagnetic and cyber attack. As things stand, the control system is thought to be the problem.

A piston is invulnerable to EM and cyber attack since, if worse comes to worse, the valves can be operated manually, as was done with steam-catapults throughout WWII. And pistons are very robust — far more robust than solenoid coils — because they are far less complex. As much force as you put on the plane, has to be put on the coil or piston. Thus, for 5 g acceleration, the coil or piston has to experience 250,000 lbs of horizontal force. That’s 3 million Newtons for those who like SI units (here’s a joke about SI units). A solid piston will have no problem withstanding 250,000 lbs for years. Piston steamships from the 50s are still in operation. Coils are far more delicate, and the life-span is likely to be short, at least for current designs.

The reason I suggest compressed air, pneumatics, instead of steam is that air is not as hot and corrosive as steam. Also an air compressor can be located close to the flight deck, connected to the power center by electric wires. Steam requires long runs of steam pipes, a more difficult proposition. As a possible design, one could use a multi-stage, inter-cooled air compressor connected to a ballast tank, perhaps 5 feet in diameter x 100 feet long to guarantee uniform pressure. The ballast tank would provide the uniform pressure while allowing the use of a relatively small compressor, drawing less power than the EMALS. Those who’ve had freshman physics will be able to show that 5 g acceleration will get the plane to 130 mph in only 125 feet of runway. This is far less runway than the EMALS requires. For lighter planes or greater efficiency, one could shut off the input air before 120 feet and allow the remainder of the air to expand for 200 feet of the piston.

The same pistons could be used for capturing an airplane. It could start at 250 psi, dead-ended to the cylinder top. The captured airplane would push air back into the ballast tank, or the valve could be closed allowing pressure to build. Operated that way, the cylinder could stop the plane in 60 feet. You can’t do that with an EMAL. I should also mention that the efficiency of the piston catapult can be near 100%, but the efficiency of the EMALS will be near zero at the beginning of acceleration. Low efficiency at low speed is a problem found in all electromagnetic actuators: lots of electromagnetic power is needed to get things moving, but the output work,  ∫F dx, is near zero at low velocity. With EM, efficiency is high at only at one speed determined by the size of the moving coil; with pistons it’s high at all speeds. I suggest the Navy keep their EMALS, but only as a secondary system, perhaps used to launch drones until they get sea experience and demonstrate a real advantage over pneumatics.

Robert Buxbaum, May 19, 2017. The USS Princeton was the fanciest ship in the US fleet, with super high-tech cannons. When they mis-fired, it killed most of the cabinet of President Tyler. Slow and steady wins the arms race.

# A very clever hydrogen pump

I’d like to describe a most clever hydrogen pump. I didn’t invent it, but it’s awfully cool. I did try to buy one from “H2 Pump,” a company that is now defunct, and I tried to make one. Perhaps I’ll try again. Here is a diagram.

Electrolytic membrane H2 pump

This pump works as the reverse of of a PEM fuel cell. Hydrogen gas is on both sides of a platinum-coated, proton-conducting membrane — a fuel cell membrane. As in a PEM fuel cell, the platinum splits the hydrogen molecules into H atoms. An electrode removes electrons to form H+ ions on one side of the membrane; the electrons are on the other side of the membrane (the membrane itself is chosen to not conduct electricity). The difference from the fuel cell is that, for the pump you apply a energy (voltage) to drive hydrogen across the membrane, to a higher pressure side; in a fuel cell, the hydrogen goes on its own to form water, and you extract electric energy.

As shown, the design is amazingly simple and efficient. There are no moving parts except for the hydrogen itself. Not only do you pump hydrogen, but you can purify it as well, as most impurities (nitrogen, CO2) will not go through the membrane. Water does permeate the membrane, but for many applications, this isn’t a major impurity. The amount of hydrogen transferred per plate, per Amp-second of current is given by Faraday’s law, an equation that also shows up in my discussion of electrolysis, and of electroplating,

C= zFn.

Here, C is the current in Amp-seconds, z is the number or electrons transferred per molecule, in this case 2, F is Faraday’s constant, 96,800, n is the number of mols transferred.  If only one plate is used, you need 96,800 Amp-seconds per gram of hydrogen, 53.8 Amp hours per mol. Most membranes can operate at well at 1.5 Amp per cm2, suggesting that a 1.1 square-foot membrane (1000 cm2) will move about 1 mol per minute, 22.4 slpm. To reduce the current requirement, though not the membrane area requirement, one typically stacks the membranes. A 100 membrane stack would take 16.1 Amps to pump 22.4 slpm — a very manageable current.

The amount of energy needed per mol is related to the pressure difference via the difference in Gibbs energy, ∆G, at the relevant temperature.

Energy needed per mol is, ideally = ∆G = RT ln Pu/Pd.

where R is the gas constant, 8.34 Joules per mol, T is the absolute temperature, Kelvins (298 for a room temperature process), ln is the natural log, and Pu/Pd is the ratio of the upstream and downstream pressure. We find that, to compress 2 grams of hydrogen (one mol or 22.4 liters) to 100 atm (1500 psi) from 1 atm you need only 11400 Watt seconds of energy (8.34 x 298 x 4.61= 11,400). This is .00317 kW-hrs. This energy costs only 0.03¢ at current electric prices, by far the cheapest power requirement to pump this much hydrogen that I know of. The pump is surprisingly compact and simple, and you get purification of the hydrogen too. What could possibly go wrong? How could the H2 pump company fail?

One thing that I noticed went wrong when I tried building one of these was leakage at the seals. I found it uncommonly hard to make seals that held even 20 psi. I was using 4″ x 4″ membranes so 20 psi was the equivalent of 320 pounds of force. If I were to get 200 psi, there would have been 3200 lbs of force. I could never get the seals to stay put at anything more than 20 psi.

Another problem was the membranes themselves. The membranes I bought were not very strong. I used a wire-mesh backing, and a layer of steel behind that. I figured I could reach maybe 200 psi with this design, but didn’t get there. These low pressures limit the range of pump applications. For many applications,  you’d want 150-200 psi. Still, it’s an awfully cool pump,

Robert E. Buxbaum, February 17, 2017. My company, REB Research, makes hydrogen generators and purifiers. I’ve previously pointed out that hydrogen fuel cell cars have some dramatic advantages over pure battery cars.

# Boy-Girl physics humor

Girl breaking up with her boyfriend: I just need two things, more space, and time.

Atoms build physicists in an attempt to understand themselves. That’s also why physicists build physics societies and clubs.

Boyfriend: So, what’s the other thing?

Robert Buxbaum. And that, dear friend, is why science majors so rarely have normal boyfriends / girlfriends.

A female engineer friend of mine commented on the plight of dating in the department: “The odds are good, but the goods are odd.”

By the way, the solution to Einstein’s twin paradox resides in understanding that time is space. Both twins see the space ship moving at the same pace, but space shrinks for the moving twin in the space ship, not for the standing one. Thus, the moving twin finishes his (or her) journey in less time than the standing one observes.

# Of horses, trucks, and horsepower

Horsepower is a unit of work production rate, about 3/4 of a kW, for those who like standard international units. It is also the pulling force of a work horse of the 1700s times its speed when pulling, perhaps 5 mph. A standard truck will develop 200 hp but only while accelerating at about 60 mph; to develop those same 200 horsepower at 1 mph it would have to pull with 200 times more force. That is impossible for a truck, both because of traction limitations and because of the nature of a gasoline engine when attached to typical gearing. At low speed, 1 mph, a truck will barely develop as much force as 4-5 horses, suggesting a work output about 1 hp. This is especially true for a truck pulling in the snow, as shown in the video below.

Here, a semi-truck (of milk) is being pulled out of the snow by a team of horses going perhaps 1 mph. The majority of work is done by the horse on the left — the others seem to be slipping. Assuming that the four horses manage to develop 1 hp each (4 hp total), the pull force is four times a truck at 1 mph, or as great as a 200 hp truck accelerating at 50 mph. That’s why the horse succeed where the truck does not.

You will find other videos on the internet showing that horses produce more force or hp than trucks or tractors. They always do so at low speeds. A horse will also beat a truck or car in acceleration to about the 1/4 mile mark. That’s because acceleration =force /mass: a = F/m.

I should mention that DC electric motors also, like horses, produce their highest force at very low speeds, but unlike horses, their efficiency is very low there. Electric engine efficiency is high only at speeds quite near the maximum and their horse-power output (force times speed) is at a maximum at about 1/2 the maximum speed.

Steam engines (I like steam engines) produce about the same force at all speeds, and more-or-less the same efficiency at all speeds. That efficiency is typically only about 20%, about that of a horse, but the feed cost and maintenance cost is far lower. A steam engine will eat coal, while a horse must eat oats.

March 4, 2016. Robert Buxbaum, an engineer, runs REB Research, and is running for water commissioner.

# Highest temperature superconductor so far: H2S

The new champion of high-temperature superconductivity is a fairly common gas, hydrogen sulphide, H2S. By compressing it to 150 GPa, 1.5 million atm., a team lead by Alexander Drozdov and M. Eremets of the Max Planck Institute coaxed superconductivity from H2S at temperatures as high as 203.5°K (-70°C). This is, by far, the warmest temperature of any superconductor discovered to-date, and it’s main significance is to open the door for finding superconductivity in other, related hydrogen compounds — ideally at warmer temperatures and/or less-difficult pressures. Among the interesting compounds that will certainly get more attention: PH3, BH3, Methyl mercaptan, and even water, either alone or in combination with H2S.

Relation between pressure and critical temperature for superconductivity, Tc, in H2S (filled squares) and D2S (open red). The magenta point was measured by magnetic susceptibility (Nature)

H2S superconductivity appears to follow the standard, Bardeen–Cooper–Schrieffer theory (B-C-S). According to this theory superconductivity derives from the formation of pairs of opposite-spinning electrons (Cooper pairs) particularly in light, stiff, semiconductor materials. The light, positively charged lattice quickly moves inward to follow the motion of the electrons, see figure below. This synchronicity of motion is posited to create an effective bond between the electrons, enough to counter the natural repulsion, and allows the the pairs to condense to a low-energy quantum state where they behave as if they were very large and very spread out. In this large, spread out state, they slide through the lattice without interacting with the atoms or the few local vibrations and unpaired electrons found at low temperatures. From this theory, we would expect to find the highest temperature superconductivity in the lightest lattice, materials like ice, boron hydride, magnesium hydride, or H2S, and we expect to find higher temperature behavior in the hydrogen version, H2O, or H2S than in the heavier, deuterium analogs, D2O or D2S. Experiments with H2S and D2S (shown at right) confirm this expectation suggesting that H2S superconductivity is of the B-C-S type. Sorry to say, water has not shown any comparable superconductivity in experiments to date.

We have found high temperature superconductivity in few of materials that we would expect from B-C-S theory, and yet-higher temperature is seen in many unexpected materials. While hydride materials generally do become superconducting, they mostly do so only at low temperatures. The highest temperature semiconductor B-C-S semiconductor discovered until now was magnesium boride, Tc = 27 K. More bothersome, the most-used superconductor, Nb-Sn, and the world record holder until now, copper-oxide ceramics, Tc = 133 K at ambient pressure; 164 K at 35 GPa (350,000 atm) were not B-C-S. There is no version of B-C-S theory to explain why these materials behave as well as they do, or why pressure effects Tc in them. Pressure effects Tc in B-C-S materials by raising the energy of small-scale vibrations that would be necessary to break the pairs. Why should pressure effect copper ceramics? No one knows.

The standard theory of superconductivity relies on Cooper pairs of electrons held together by lattice elasticity. The lighter and stiffer the lattice, the higher temperature the superconductivity.

The assumption is that high-pressure H2S acts as a sort of metallic hydrogen. From B-C-S theory, metallic hydrogen was predicted to be a room-temperature superconductor because the material would likely to be a semi-metal, and thus a semiconductor at all temperatures. Hydrogen’s low atomic weight would mean that there would be no significant localized vibrations even at room temperature, suggesting room temperature superconductivity. Sorry to say, we have yet to reach the astronomical pressures necessary to make metallic hydrogen, so we don’t know if this prediction is true. But now it seems H2S behaves nearly the same without requiring the extremely high pressures. It is thought that high temperature H2S superconductivity occurs because H2S somewhat decomposes to H3S and S, and that the H3S provides a metallic-hydrogen-like operative lattice. The sulfur, it’s thought, just goes along for the ride. If this is the explanation, we might hope to find the same behaviors in water or phosphine, PH3, perhaps when mixed with H2S.

One last issue, I guess, is what is this high temperature superconductivity good for. As far as H2S superconductivity goes, the simple answer is that it’s probably good for nothing. The pressures are too high. In general though, high temperature superconductors like NbSn are important. They have been valuable for making high strength magnets, and for prosaic applications like long distance power transmission. The big magnets are used for submarine hunting, nuclear fusion, and (potentially) for levitation trains. See my essay on Fusion here, it’s what I did my PhD on — in chemical engineering, and levitation trains, potentially, will revolutionize transport.

Robert Buxbaum, December 24, 2015. My company, REB Research, does a lot with hydrogen. Not that we make superconductors, but we make hydrogen generators and purifiers, and I try to keep up with the relevant hydrogen research.

# Why I don’t like the Iran deal

Treaties, I suspect, do not exist to create love between nations, but rather to preserve, in mummified form, the love that once existed between leaders. They are useful for display, and as a guide to the future, their main purpose is to allow a politician to help his friends while casting blame on someone else when problems show up. In the case of the US Iran-deal that seems certain to pass in a day or two with only Democratic-party support, and little popular support, I see no love between the nations. On a depressingly regular basis, Iranian leaders promise Death to America, and Death to America’s sometime-ally Israel. Iran has acted on these statements too, funding Hezbollah missiles and suicide bombers, and hanging its dissidents: practices that lead it to become something of a pariah among its neighbors. They also display the sort of nuclear factories and ICBMs (long-range rockets) that could make them much bigger threats if they choose to become bigger threats. The deal just signed by US Secretary of State and his counterpart in Iran (read in full here) seems to preserve this state. It releases to Iran \$100,000,000,000 to \$150,000,000,000 that it claims it will use against Israel, and Iran claims to have no interest in developing multi-point compression atom bombs. This is a tiny concession given that our atom bomb at Hiroshima was single-point compression, first generation, and killed 90,000 people.

Iranian intercontinental ballistic missile, new for 2015. Should easily deliver warheads far beyond Israel -even to the US.

The deal itself is about 170 pages long and semi-legalistic, but I found it easy to read. The print is large, Iran has few obligations, and the last 100 pages or so are a list companies that will no longer be sanctioned. The treaty asserts that we will defend Iran against attacks including military and cyber attacks, and sabotage –presumably from Israel, but gives no specifics. Also we are to help them with oil, naval, and fusion technology, while leaving them with 1500 kg of 20% enriched U235. That’s enough for quick conversion to 8 to 10 Hiroshima-size A-bombs (atom bombs) containing 25-30 kg each of 90% U235. The argument in favor of the bill seems to be that, by giving Iran the money and technology, and agreeing with their plans, Iran will come to like us. My sense is that this is wishful-thinking, and unlikely (as Jimmy Carter discovered). The unwritten contract isn’t worth the paper it’s written on.

As currently written, Iran does not recognize Israel’s right to exist. To the contrary, John Kerry has stated that a likely consequence is further attacks on Israel. Given Hezbollah’s current military budget is only about \$150,000,000 and Hamas’s only about \$15,000,000 (virtually all from Iran), we can expect a very significant increase in attacks once the money is released — unless Iran’s leaders prove to be cheapskates or traitors to their own revolution (unlikely). Given our president’s and Ms Clinton’s comments against Zionist racism, I assume that they hope to cow Israel into being less militant and less racist, i.e. less Jewish. I doubt it, but you never know. I also expect an arms race in the middle east to result. As for Iran’s statements that they seek to kill every Jew and wipe out the great satan, the USA: our leaders may come to regret hat they ignore such statements. I guess they hope that none of their friends or relatives will be among those killed.

Kerry on why we give Iran the ability to self-inspect.

I’d now like to turn to fusion technology, an area I know better than most. Nowhere does the treaty say what Iran will do with nuclear fusion technology, but it specifies we are to provide it, and there seem to be only two possibilities of what they might do with it: (1) Build a controlled fusion reactor like the TFTR at Princeton — a very complex, expensive option, or (2) develop a hydrogen fusion bomb of the sort that vaporized the island of Bimini: an H-bomb. I suspect Iran means to do the latter, while I imagine that, John Kerry is thinking the former. Controlled fusion is very difficult; uncontrolled fusion is a lot easier. With a little thought, you’ll see how to build a decent H-bomb.

My speculation of why Iran would want to make an H-bomb is this: they may not trust their A-bombs to win a war with Israel. As things stand, their A-bomb scientists are unlikely to coax more than 25 to 100 kilotons of explosive power out of each bomb, perhaps double that of Hiroshima and Nagasaki. But our WWII bombs “only” killed 70,000 to 90,000 people each, even with the radiation deaths. Used against Israel, such bombs could level the core of Jerusalem or Tel Aviv. But most Israelis would survive, and they would strike back, hard.

To beat the Israelis, you’d need a Megaton-size, hydrogen bomb. Just one Megaton bomb would vaporize Jerusalem and it’s suburbs, kill a million inhabitants at a shot, level the hills, vaporize the artifacts in the jewish museum, and destroy anything we now associate with Israel. If Iran did that, while retaining a second bomb for Tel-Aviv, it is quite possible Israel would surrender. As for our aim, perhaps we hope Iran will attack Israel and leave us alone. Very bright people pushed for WWI on hopes like this.

Robert E. Buxbaum. September 9, 2015. Here’s a thought about why peace in the middle east is so hard to achieve,