Tag Archives: storms

A plague of combined sewers

The major typhoid and cholera epidemics of the US, and the plague of the Al Qaeda camps, 2009 are understood to have been caused by bad sewage, in particular by the practice of combining sanitary + storm sewage. Medieval plagues too may have been caused by combined sewers.

Combined sewer system showing an rain-induced overflow, a CSO.

A combined sewer system showing an rain-induced overflow, a CSO.

A combined system is shows at right. Part of the problem is that the outfall is hard to contain, so they tend to spew sewage into the lakes and drinking water as shown. They are also more prone to back up during rain storms; separated systems can back up too, but far less often. When combined sewers back up, turds and other infected material flows into home basements. In a previous post, “follow the feces,” I showed the path that Oakland county’s combined sewers outfalls take when they drain (every other week) into Lake St. Clair just upstream of the water intake, and I detailed why, every few years we back up sewage into basements. I’d like to now talk a bit more about financial cost and what I’d like to do.

The combined sewer system shown above includes a small weir dam. During dry periods and small rain events, the dam keeps the sewage from the lake by redirecting it to the treatment plant. This protects the lakes so that sometimes the beaches are open, but there’s an operation cost: we end up treating a lot of rain water as if it were sewage. During larger rains, the dam overflows. This protects our basements (usually) but it does so at the expense of the drinking water, and of the water in Lake St. Clair and Lake Erie.

As a way to protect our lakes somewhat Oakland county has added a retention facility, the George W. Kuhn. This facility includes the weir shown above and a huge tank for sewage overflows. During dry periods, the weir holds back the flow of toilet and sink water so that it will flow down the pipe (collector) to the treatment plant in Detroit, and so it does not flow into the lake. Treatment in Detroit is expensive, but nonpolluting. During somewhat bigger rains the weir overflows to the holding tank. It is only during yet-bigger rains (currently every other week) that the mixture of rain and toilet sewage overwhelms the tank and is sent to the river and lake. The mess this makes of the lake is shown in the video following. During really big rains, like those of August 2014, the mixed sewage backs up in the pipes, and flows back into our basements. With either discharge, we run the risk of plague: Typhoid, Cholera, Legionnaires…

Some water-borne plagues are worse than others. With some plagues, you can have a carrier, a person who can infect many others without becoming deathly sick him or herself. Typhoid Mary was a famous carrier of the 1920s. She infected (and killed) hundreds in New York without herself becoming sick. A more recent drinking water plague, showed up in Milwaukee 25 years ago. Some 400,000 people were infected, and 70 or so died. Milwaukee disinfected its drinking water with chlorine and a bacteria that entered the system was chlorine tolerant. Milwaukee switched to ozone disinfection but Detroit still uses chlorine.

Combined sewers require much larger sewage treatment plants than you’d need for just sanitary sewage. Detroit’s plant is huge and its size will need to be doubled to meet new, stricter standards unless we bite the bullet and separate our sewage. Our current system doesn’t usually meet even the current, lower standards. The plant overflows and operation cost are high since you have to treat lots of rainwater. These operation costs will keep getter higher as pollution laws get tougher.

In Oakland county, MI we’ve started to build more and more big tanks to hold back and redirect the water so it doesn’t overwhelm the sewage plants. The GWK tank occupies 1 1/2 miles by about 100 feet beneath a golf course. It’s overwhelmed every other week. Just think of the tank you’d need to hold the water from 4″ of rain on 900 square mile area (Oakland county is 900 square miles). Oakland’s politicians seem happy to spend money on these tanks because it creates jobs and graft and because it suggests that something is being done. They blame politics when rain overwhelms the tank. I say it’s time to end the farce and separate our sewers. My preference is to separate the sewers through the use of French drains or bio-swales, and through the use of weir dams. I’m running for drain commissioner. Here’s something I’ve written on the chemistry of sewage, and on the joy of dams.

Dr. Robert E. Buxbaum, July 1-Sept 16, 2016.

What causes the swirl of tornadoes and hurricanes

Some weeks ago, I presented an explanation of why tornadoes and hurricanes pick up stuff based on an essay by A. Einstein that explained the phenomenon in terms of swirling fluids and Coriolis flows. I put in my own description that I thought was clearer since it avoided the word “Coriolis”, and attached a video so you could see how it all worked — or rather that is was as simple as all that. (Science teachers: I’ve found kids love it when I do this, and similar experiments with centrifugal force in the class-room as part of a weather demonstration).

I’d like to now answer a related question that I sometimes get: where does the swirl come from? hurricanes that answer follows, though I think you’ll find my it is worded differently from that in Wikipedia and kids’ science books since (as before) I don’t use the word Coriolis, nor any other concept beyond conservation of angular momentum plus that air flows from high pressure to low.

In Wikipedia and all the other web-sits I visited, it was claimed that the swirl came from “Coriolis force.” While this isn’t quite wrong, I find this explanation incomprehensible and useless. Virtually no-one has a good feel for Coriolis force as such, and those who do recognize that it doesn’t exist independently like gravity. So here is my explanation based on low and high pressure and on conservation of angular momentum.  I hope it will be clearer.

All hurricanes are associated with low pressure zones. This is not a coincidence as I understand it, but a cause-and-effect relationship. The low pressure center is what causes the hurricane to form and grow. It may also cause tornadoes but the relationship seems less clear. In the northern hemisphere, the lowest low pressure zones are found to form over the mid Atlantic or Pacific in the fall because the water there is warm and that makes the air wet and hot. Static air pressure is merely the weight of the air over a certain space, and as hot air has more volume and less density, it weighs less. Less weight = less pressure, all else being equal. Adding water (humidity) to air also reduces the air pressure as the density of water vapor is less than that of dry air in proportion to their molecular weights. The average molecular weight of dry air is 29 and the molecular weight of water is 18. As a result, every 9% increase in water content decreases the air pressure by 1% (7.6 mm or 0.3″ of mercury).

Air tends to flow from high pressure zones to low pressure zones. In the northern hemisphere, some of the highest high pressure zones form over northern Canada and Russia in the winter. High pressure zones form there by the late fall because these regions are cold and dry. Cold air is less voluminous than hot, and as a result additional hot air flows into these zones at high altitude. At sea level the air flows out from the high pressure zones to the low pressure zones and begins to swirl because of conservation of angular momentum.

All the air in the world is spinning with the earth. At the north pole the spin rate is 360 degrees every 24 hours, or 15 degrees per hour. The spin rate is slower further south, proportionally to the sine of the latitude, and it is zero at the equator. The spin of the earth at your location is observable with a Foucault pendulum (there is likely to be one found in your science museum). We normally don’t notice the spin of the air around us because the earth is spinning at the same rate, normally. However the air has angular momentum, and when air moves into into a central location the angular speed increases because the angular momentum must be conserved. As the gas moves in, the spin rate must increase in proportion; it eventually becomes noticeable relative to the earth’s spin. Thus, if the air starts out moving at 10 degrees per hour (that’s the spin rate in Detroit, MI 41.8° N), and moves from 800 miles away from a low pressure center to only 200 miles from the center, the angular momentum must increase four times, or to 40 degrees per hour. We would only see 30 degrees/hr of this because the earth is spinning, but the velocity this involves is significant: V= 200 miles * 2* pi *30/360 = 104 mph.

To give students a sense of angular momentum conservation, most science centers (and colleges) use an experiment involving bicycle wheels and a swivel chair. In the science centers there is usually no explanation of why, but in college they tend to explain it in terms of vectors and (perhaps) gauge theories of space-time (a gauge is basically a symmetry; angular momentum is conserved because space is symmetric in rotation). In a hurricane, the air at sea level always spins in the same direction of the earth: counter clockwise in the northern hemisphere, clockwise in the southern, but it does not spin this way forever.

The air that’s sucked into the hurricane become heated and saturated with water. As a result, it becomes less dense, expands, and rises, sucking fresh air in behind it. As the hot wet air rises it cools and much of the water rains down as rain. When the, now dry air reaches a high enough altitude its air pressure is higher than that above the cold regions of the north; the air now flows away north. Because this hot wet air travels north we typically get rain in Michigan when the Carolinas are just being hit by hurricanes. As the air flows away from the centers at high altitudes it begins to spin the opposite direction, by the way, so called counter-cyclonally because angular momentum has to be consevered. At high altitudes over high pressure centers I would expect to find cyclones too (spinning cyclonally) I have not found a reference for them, but suspect that airline pilots are aware of the effect. There is some of this spin at low altitudes, but less so most of the time.

Hurricanes tend to move to the US and north through the hurricane season because, as I understand it, the cold air that keeps coming to feed the hurricane comes mostly from the coastal US. As I understand it the hurricane is not moving as such, the air stays relatively stationary and the swirl that we call a hurricane moves to the US in the effective direction of the sea-level air flow.

For tornadoes, I’m sorry to say, this explanation does not work quite as well, and Wikipedia didn’t help clear things up for me either. The force of tornadoes is much stronger than of hurricanes (the swirl is more concentrated) and the spin direction is not always cyclonic. Also tornadoes form in some surprising areas like Kansas and Michigan where hurricanes never form. My suspicion is that most, but not all tornadoes form from the same low pressure as hurricanes, but by dry heat, not wet. Tornadoes form in Michigan, Texas, and Alabama in the early summer when the ground is dry and warmer than the surrounding lakes and seas. It is not difficult to imagine the air rising from the hot ground and that a cool wind would come in from the water and beginning to swirl. The cold, damp sea air would be more dense than the hot, dry land air, and the dry air would rise. I can imagine that some of these tornadoes would occur with rain, but that many the more intense?) would have little or none; perhaps rain-fall tends to dampen the intensity of the swirl (?)

Now we get to things that I don’t have good explanation for at all: why Kansas? Kansas isn’t particularly hot or cold; it isn’t located near lakes or seas, so why do they have so many tornadoes? I don’t know. Another issue that I don’t understand: why is it that some tornadoes rotate counter cyclonicly? Wikipedia says these tornadoes shed from other tornadoes, but this doesn’t quite seem like an explanation. My guess is that these tornadoes are caused by a relative high pressure source at ground level (a region of cold ground for example) coupled with a nearby low pressure zone (a warm lake?). My guess is that this produces an intense counter-cyclonic flow to the low pressure zone. As for why the pressure is very low in tornadoes, even these that I think are caused by high pressure, I suspect the intense low pressure is an epee-phenomenon caused by the concentration of spin — one I show in my video. That is, I suspect that the low pressure in the center of counter-cyclonic tornadoes is not the cause of the tornado but an artifact of the concentrated spin. Perhaps I’m wrong here, but that’s the explanation that seems to fit best with the info I’ve got. If you’ve got better explanations for these two issues, I’d love to hear them.

Why tornadoes and hurricanes lift up cars, cows, etc.

Here’s a video I made for my nieces and any other young adults on why it is that tornadoes and hurricanes lift stuff up. It’s all centrifugal forces — the same forces that generate the low pressure zone at the center of hurricanes. The explanation is from Albert Einstein, who goes on show why it is that rivers don’t run straight; before you read any more of it, I’d suggest you first watch the video here. It’s from my Facebook page, so it should be visible.

If can’t see, you may have to friend me on Facebook, but until then the video shows a glass coffee cup with some coffee grounds and water in it. Originally, the grounds are at the bottom of the cup showing that they are heavier than the water. When I swirl the water in the cup, you’ll see that the grounds are lifted up into a heap in the center with some flowing all around in a circle — to the top surface and then to the walls of the cup. This is the same path followed by light things (papers for example) in a tornado. Cows, houses and cars that are caught up in real tornadoes get sucked in and lifted up too, but they never get to the top to be thrown outward.

The explanation for the lifting is that the upper layers of liquid swirl faster than the lower layers. As a result there is a low pressure zone above the middle of the swirl. The water (or air) moves upward into this lower pressure area and drags along with it cows, cars, houses and the like (Here’s another post on the subject of where the swirl comes from). The reason the swirl is faster above the bottom of the cup is that the cup bottom adds drag to the flow (the very bottom isn’t swirling at all). The faster rotating, upper flows have a reasonable amount of centrifugal force and thus a lower pressure in the middle of the swirl, and a higher pressure further out. The non-rotating bottom has a more uniform pressure that’s relatively higher in the middle, and relatively lower on the outside. As a result there is a secondary flow where air moves down around the outside of the flow and up in the middle. You can see this secondary flow in the video by following the lighter grounds.

Robert. E. Buxbaum. Weather is not exactly climate, but in my opinion both are cyclic and chaotic. I find there is little evidence that we can stop climate change, and suspect there is no advantage to wanting the earth colder. There was a tornado drought in 2013, and a hurricane draught too. You may not have heard of either because it’s hard to report on the storms that didn’t happen.