Tag Archives: heart

Almost no one over 50 has normal blood pressure now.

Four years ago, when the average lifespan of American men was 3.1 years longer than today, the American Heart Association and the American College of Cardiology dropped the standard for normal- acceptable blood pressure for 50+ years olds from 140/90 to 120/80. The new standard of normal was for everyone regardless or age or gender despite the fact that virtually no one over 50 now reached it. Normal is now quite un-common.

By the new definition, virtually everyone over 50 now is diagnosed with high blood pressure or hypertension. Almost all require one or two medications — no more baby aspirin. Though the evidence for aspirin’s benefit is strong, it doesn’t lower blood pressure. AHA guidance is to lower a patients blood pressure to <140/90 mmHg or at least treat him/her with 2–3 antihypertensive medications.4 

Average systolic blood pressures for long-lived populations of men and women without drugs.

The graphs shows the average blood pressures, without drugs in a 2008 study of the longest-lived, Scandinavian populations. These were the source of the previous targets: the natural pressures for the healthiest populations at the time, based on the study of 1304 men (50-79 years old) and 1246 women (38-79 years old) observed for up to 12 years. In this healthy population, the average untreated systolic pressure is seen till age 70, reaching 154 for men, and over 160 for women. By the new standards, these individuals would be considered highly unhealthy, though they live a lot longer than we do. The most common blood-pressure drug prescribed in the US today is atenolol, a beta blocker. See my essay on Atenolol. It’s good at lowering blood pressure, but does not decrease mortality.

The plot at left shows the relationship between systolic blood pressure and death. There is a relationship, but it is not clear that the one is the cause of the other, especially for individuals with systolic pressure below 160. Those with pressures of 170 and above have significantly higher mortality, and perhaps should take atenolol, but even here it might be that high cholesterol, or something else, is causing both the high blood pressure and the elevated death risk.

The death-risk difference between 160 and 100 mmHg is small and likely insignificant. The minimum at 110 is rather suspect too. I suspect it’s an artifact of a plot that ignores age. Only young people have this low number, and young people have fewer heart attacks. Artificially lowering a person’s blood pressure, even to this level does not make him young, [2][3] and brings some problems. Among the older-old, 85 and above, a systolic blood pressure of 180 mmHg is associated with resilience to physical and cognitive decline, though it is also associated with higher death rate.

The AHA used a smoothed version of the life risk graph above to justify their new standards, see below. In this version, any blood pressure looks like it’s bad. The ideal systolic pressure seems to be 100 or below. This is vastly too low a target, especially for a 60 year old. Based on the original graph, I would think that anything below 155 is OK.

smoothed chart of deaths per 1000 vs blood pressure. According to this chart, any blood pressure is bad. There is no optimum.

Light exercise seems to do some good especially for the overweight. Walking helps, as does biking, and aerobics. Weight loss without exercise seems to hurt health. Aspirin is known to do some good, with minimal cost and side effects. Ablation seems to help for those with atrial fibrillation. Elequis (a common blood thinner) seems to have value too, for those with atrial fibrillation — not necessarily for those without. Low sodium helps some, and coffee, reducing gout, dementia and Parkinson’s, and alcohol. Some 2-3 drinks per day (red wine?) is found to improve heart health.

I suspect that the Scandinavians live longer because they drink mildly, exercise mildly, have good healthcare (but not too good), and have a low crime rate. They seem to have dodged the COVID problem too, even Sweden that did next to nothing. it’s postulated that the problem is over medication, including heart medication.

Robert Buxbaum, January 4, 2023. The low US lifespan is startling. Despite spending more than any other developed countries on heath treatments, we have horribly lower lifespans, and it’s falling fast. A black man in the US has the same expected lifespan as in Rwanda. Causes include heart attacks and strokes, accidents, suicide, drugs, and disease. Opioids too, especially since the COVID lockdowns.

Eliquis, over-prescribed but better than Coumadin.

Eliquis (apixaban) is blood thinner shown to prevent stroke with fewer side effects than Warfarin (Coumadin). Aspirin does the same, but not as effectively for people over 75. My problem with eliquis is that it’s over-prescribed. The studies favoring it over aspirin found benefits for those over 75, and for those with A-Fib. And even in this cohort the advantage over aspirin is small or non-existent because eliquis has far more serious side effects; hemorrhage, or internal bleeding.

Statistically, the AVERROES study (Apixaban Versus Acetylsalicylic Acid to Prevent Stroke in AF Patients Who Have Failed or Are Unsuitable for Vitamin K Antagonist Treatment) found that apixaban is substantially better than aspirin at preventing stroke in atrial fibrillation patients, but worse at preventing heart attack.

Taking 50 mg of Eliquis twice a day, reduces the risk of stroke in people with A-Fib by more than 50% and reduces the rate of heart attack by about 15%. By comparison, taking 1/2 tablet of aspirin, 178 mg, reduces the risk of stroke by 17% and of heart attack by 42%. The benefits were higher in the elderly, those over 75, and non existent in those with A-Fib under 75, see here, and figure. Despite this, doctors prescribe Eliquis over aspirin, even to those without A-Fib and those under 75. I suspect the reason is advertising by the drug companies, as I’ve claimed earlier with Atenolol.

The major deadly side-effect is hemorrhage, brain hemorrhage and GI (stomach) hemorrhage. Here apixaban is far worse than with aspirin (but better than Warfarin). The net result is that in the AVERROES random-double blind study there was no difference in all-cause mortality between apixaban and aspirin for those with A-fib who were under 75, see here. Or here.

To reduce your chance of GI hemorrhage with Eliquis, it is a very good idea to take a stomach proton pump drug like Pantoprazole. If you have A-Fib, the combination of Eliquis and pantoprazole seems better than aspirin alone, even for those under 75. If you have no A-Fib and are under 75, I see no benefit to Eliquis, especially if you find you have headaches, stomach aches, back pain, or other signs of internal bleeding, you might switch to aspirin or choose a reduced dose.

A Japanese study found that half the normal dose of Eliquis, was approximately as effective as the full dose, 50 mg twice a day. I was prescribed Eliquis, full dose twice a day, but I’m under 70 and I have no A-Fib since my ablation.

Life expectancy has dropped in the US to undeveloped world levels. Biden blames COVID and racism. I think it’s too much drugs, and too few opportunities.

I’m struck by the fact that US life expectancy is uncommonly low, lower than in most developed countries. Lower too than in many semi-developed countries, and our life expectancy is decreasing while other countries are not seeing the same. It dropped by about 3 years over the last 2 years as shown. I wonder why the US has suffered more than other countries, and suspect we are over-prescribed. Too much of a good thing, typically isn’t good.

Robert Buxbaum, September 16, 2022. As a side issue, low dose aspirin may forestall Alzheimers and other dementias. See current article here. Also another study here.

Atenolol, not good for the heart, maybe good for the doctor.

Atenolol and related beta blockers have been found to be effective reducing blood pressure and heart rate. Since high blood pressure is a warning sign for heart problems, doctors have been prescribing atenolol and related beta blockers for all sorts of heart problems, even problems that are not caused by high blood pressure. I was prescribed metoprolol and then atenolol for Atrial Fibrillation, A-Fib, beginning 2 yeas ago, even though I have low-moderate blood pressure. For someone like me, it might have been deadly. Even for patients with moderately high blood pressure (hypertension) studies suggest there is no heart benefit to atenolol and related ß-blockers, and only minimal stroke and renal benefit. As early as 1985 (37 years ago) the Medical Research Council trial found that “ß blockers are relatively ineffective for primary treatment of hypertensive outcomes.”

End point. Relative risk. 95% CI. All-cause mortality Cardiovascular mortality MI Stroke Carlberg B et al. Lancet 2004; 364:1684–1689.

There lots of adverse side-effects to atenolol, as listed at the end of this post. More recent studies (e.g. Carlsberg et al., at right) continue to find no positive effects on the heart, but lots of negatives. A review in Lancet (2004) 364,1684–9 was titled, “Review: atenolol may be ineffective for reducing cardiovascular morbidity or all cause mortality in hypertension” (link here). “In patients with essential hypertension, atenolol is not better than placebo or no treatment for reducing cardiovascular morbidity or all cause mortality.” It further concluded that, “compared to other antihypertensive drugs, it [atenolol] may increase the risk of stroke or death.” I showed this and related studies to my doctor, and pointed out that I have averaged to low blood pressure, but he persisted in pushing this drug, something that seems common among medical men. My guess is that the advertising or doctor subsidies are spectacular. By contrast, aspirin has long been known to be effective for heart problems; my doctor said to go off aspirin.

The graph at right is from “Trial of Secondary Prevention with Atenolol after transient Ischemic Attack or Nondisabling Ischemic Stroke”, published in Stroke, 24 4 (1993), (see link here). a Thje study involved 1473 at-risk patients, randomly prescribed atenolol or placebo. It found no outcome benefit from atenolol, and several negatives. After 3 years, in two equal-size randomized groups, there were 64 deaths among the atenolol group, 58 among the placebo group; there were 11 fatal strokes with atenolol, versus 8 with placebo. There were somewhat fewer non-fatal strokes with atenolol, but the sum-total of fatal and non-fatal strokes was equal; there were 81 in each group.

“Trial of Secondary Prevention with Atenolol after transient Ischemic Attack or Nondisabling Ischemic Stroke”, published in Stroke, 24 4 (1993).

Newer beta blockers seem marginally better, as in “Effect of nebivolol or atenolol vs. placebo on cardiovascular health in subjects with borderline blood pressure: the EVIDENCE study.” “Nebivolol (NEB) in contrast to atenolol (ATE) may have a beneficial effect on endothelial function …. there was no significant change in the ATE and PLAC groups.” My question: why not use one of these, or better yet aspirin. Aspirin is shown to be beneficial, and relatively side-effect free. If you tolerate aspirin, and most people do, beneficial has to be better than maybe beneficial.

Among atenolol’s ugly side effects, as listed by the Mayo Clinic, there are: tiredness, sweating, shortness of breath, confusion, loss of sex drive, cold fingers and toes, diarrhea, nausea, and general confusion. I had some of these. There was no increase in heart stability (decrease in A-fib). My heart rate went as low at 32 bpm at night. My doctor was unconcerned, but I was. I suspected the low heart rate put me at extreme risk. Eventually, the same doctor gave me ablation therapy, and that seemed to cure the A-Fib.

Following my ablation, I was told I could get off atenolol. I then discovered another negative effect of atenolol: you have to ease off it or your heart will race. If you have A-fib, or modest hypertension, consider aspirin, eliquis, ablation, or exercise. If you are prescribed atenolol for heart issues and don’t have symptoms of very-high blood pressure, consider other options and/or changing doctors.

Robert Buxbaum, August 14, 2022

Curing my heart fibrillation with ablation.

Two years ago, I was diagnosed with Atrial fibrillation, A-Fib in common parlance, a condition where my heart would sometimes speed up to double its normal speed. I was prescribed metopolol and then atenolol, common beta blockers, and a C-Pap for sleep apnea. None of this seemed to help, as best I could tell from occasional pulse measurements with watch and a finger pulse-oxometer. Besides, the C-Pap was giving me cough and the beta blockers made me dizzy. And the literature on C-Pap did not impress.

So, some moths ago, I bought an iWatch. The current versions allows you to take EKGs and provides a continuous record of your heart rate. This was very helpful, as I saw that my heart rate was transitioning to chaos. While it was normally predictable, it would zoom to 130 or so at some point virtually every day. Even more alarming, it would slow down to the mid 30s at some point during the night, bradycardia, and I could see it was getting worse. At that point, I agreed to go on eliquis, a blood thinner, and agreed to a catheter ablation. The doctor put a catheter into my heart by way of a leg vein, and zapped various nerve centers in the heart. The result is that my heart is back into normal behavior. See the heart-rate readout from my iWatch below; before and after are dramatically different.

My heart rate for the last month, very variable before the ablation treatment, 2 weeks ago; a far less variable range of heart rates in the two weeks following the treatment. Heart rate data is from my iPhone and iwatch — a good investment, IMHO.

The reason I chose ablation over drugs or no therapy was that I read health-studies on line. I’ve go a PhD, and that training helps me to understand the papers I’ve read, but you should read them too. They are not that hard to understand. Though ablation didn’t appear as a panacea, it was clearly better than the alternatives. Particularly relevant was the CABANA study on life expectancy. CABANA stands for “Catheter ABlation vs ANtiarrhythmic Drug Therapy for Atrial Fibrillation – CABANA”. https://www.acc.org/latest-in-cardiology/clinical-trials/2018/05/10/15/57/cabana.

2,204 individuals with persistent AF were followed for 5 years after treatment, 37% female, 63% male, average age 67.5. Prior hospitalization for AF: 39%. The results were as follows:

  • Death: 5.2% for ablation vs. 6.1% for drug therapy (p = 0.38)
  • Serious stroke: 0.3% for ablation vs. 0.6% for drug therapy (p = 0.19)
  • All-cause mortality: 4.4% for ablation vs. 7.5% for drug therapy (p = 0.005)
  • Death or CV hospitalization: 51.7% for ablation vs. 58.1% for drug therapy (p = 0.002)
  • Pericardial effusion with ablation: 3.0%; ablation-related events: 1.8%
  • First recurrent AF/atrial flutter/atrial tachycardia: 53.8% vs. 71.9% (p < 0.0001)

I found all of this significant, including the fact that 27.5% of those on the drug treatment crossed over to have ablation while only 9.2% on the ablation side crossed to have the drug treatment.

I must give a plug for doctor Ahmed at Beaumont Hospital who did the ablation. He does about 200 of these a year, and does them well. Do not go to an amateur. I was less-than impressed with him pushing the beta-blocker hard; I’ll write about that. Also, get an iWatch if you think you may have A-Fib or any other heart problem. You see a lot, just by watching, so to speak.

Robert Buxbaum, August 3, 2022.

C-PAPs do not help A-Fib, and seem to make heart health worse.

In this blog-post, I’d like to report on the first random study of patients with Atrial fabulation, A-Fib, and sleep apnea, comparing the health outcome of those who use a C-PAP, a “Continuous Positive Airway Pressure” device, to the outcome those who do not. The original study was published in May, 2021 (read it here) in the American Journal of Respiratory and Critical Care Medicine. The American Journal, Pulmonary Advisor published a more-popular version here.

As a background, if you are over 65 and overweight, there is a 25% chance or so that your heart rate will begin to surge semi-randomly, and that it will flutter. This is Atrial fabulation, A-Fib. It tends to get worse and tends to lead to heart attacks and strokes. People with A-fib tend to be treated with drugs, aspirin, warfarin, beta blockers, and anti arrhythmics. They also tend to be prescribed a C-PAP because overweight, older folks tend to snore and wake up a lot during the night (several times per hour: apnea).

A C-PAP definitely stops the snoring and the Apnea, and the assumption was that it would help your heart as well, if only by giving you a better night’s sleep. As it turns out, the C-PAP seems to decrease heart health — significantly.

For this study, adult patients between 18 and 75 years old diagnosed with paroxysmal A-Fib (that’s occasional AF) were screened for moderate to severe sleep apnea. Those who agreed to participate were randomly assigned to either a treatment of C-PAP plus usual care (drugs mostly) or just usual care for the next 5 months. Of the 109 who enrolled in the study, 55 got the C-PAP plus usual care, 54 got usual care alone. The outcome was that there were 9 serious, adverse heart events (strokes and heart attacks); 7 were in the C-PAP group.

The CPAP pressure was, on average, 6.8 cm H2O; mean time of use was 4.4±1.9 hours per night. The C-PAPs did their jobs on the apnea too, reducing residual apnea-hypopnea to 2.3±1.9 events per hour for those in the C-PAP group.

There was a non-statistically significant reduction is AF among the C-PAP group. They reduced their time in AF by 0.6 percentage points compared to the control group  (95% CI, -2.55 to 1.30; P =.52). That not a statistically significant difference, and is most likely random.

There was a statistically significant decrease in heart health, though. A total of 7 serious adverse events occurred in the C-PAP group and only 2 in the control group. A total of 9 is a relatively small number of events, but there is a strong statistical difference between 7 and 2.

The authors conclude: “CPAP treatment does not seem to reduce or prevent paroxysmal AF.” They should also have concluded that it reduced heart health with a statistical confidence of ~82%: (1-2(36+10)/512) =82%. See more on this type of statistics.

A possible explanation of why a C-PAP would would make heart health worse is an outcome of the this recent sleep study (link here). It appears that the C-PAP helps restore breathing, but by doing so, it interferes with a mechanism the body uses to deal with A-fib. It seems that, for people with A-Fib, their bodies use breathing stoppages to get their heart back into rhythm. For these people, many of their breathing stoppage are not obstructive, but a bio-pathway to raise the CO2 level in the blood and thus regulate heart rate. The use of a C-PAP prevents this restorative mechanism and this seem to be the reason it is destructive to the heart-health of patients with A-fib. On the other hand, a C-PAP does improve the sleep those patients whose apnea is obstructive. It seems to me that sleep studies should do a better job distinguishing the two causes of apnea. C-PAPs seem counter-indicated for patients with A-fib.

Robert Buxbaum, March 30, 2022. I was diagnosed with apnea and A-Fib some years ago. The sleep doctor prescribed a C-PAP and was adamant that I had to use it to keep my heart healthy. There were no random studies backing him up or contradicting him until now.

Aspirin protection from heart attack and COVID-19 death.

Most people know that aspirin can reduce blood clots and thus the risk heart attack, as shown famously in the 1989 “Physicians’ Health Study” where 22,000 male physicians were randomly assigned to either a regular aspirin (325 mg) every other day or an identical looking placebo. The results are shown in the table below, where “Myocardial Infarction” or “MI” is doctor-speak for heart attack.

TreatmentMyocardial InfarctionsNo InfarctionTotalfraction with MI
Aspirin13910,89811,037139/11,037 = 0.0126
Placebo23910,79511,034239/11,034 = 0.0217

Over the 5 years of the study, the physicians had 378 MI events, but mostly in the group that didn’t take aspirin: 1.28% of the doctors who took aspirin had a heart attack as opposed to 2.17% for those with the placebo. The ratio 1.28/2.17 = 0.58 is called the risk ratio. Apparently, aspirin in this dose reduces your MI risk to 58% of what it was otherwise — at least in white males of a certain age.

A blood clot showing red cells held together by fibrin fibers. Clots can cause heart attack, stroke, and breathing problems. photo: Steve Gschmeissner.

Further study showed aspirin benefits with women and other ethnicities, and benefits beyond hear attack, in any disease that induces disseminated intravascular coagulopathy. That’s doctor speak for excessive blood clots. Aspirin produced a reduction in stroke and in some cancers (Leukemia among them) and now it now seems likely that aspirin reduces the deadliness of COVID-19. Data from Wuhan showed that excessive blood clots were present in 71% of deaths vs. 0.4% of survivors. In the US, some 30% of those with serious COVID symptoms and death show excessive blood clots, particularly in the lungs. Aspirin and Vitamin D seem to help.

.The down-side of aspirin use is a reduction in wound healing and some intestinal bleeding. The intestinal bleeding is known as aspirin burn. Because of these side-effects it is common to give a lower dose today, just one baby aspirin per day, 81 mg. While this does does some good, It is not clear that it is ideal for all people. This recent study in the Lanset (2018) shows a strong relationship between body weight and aspirin response. Based on 117,279 patients, male and female, the Lanset study found that the low dose, baby aspirin provides MI benefits only in thin people, those who weigh less than about 60 kg (130 lb). If you weigh more than that, you need a higher dose, perhaps two baby aspirin per day, or a single adult aspirin every other day, the dose of the original doctors study.

In this study of COVID patients, published in July, those who had been taking aspirin fared far better than those who did not A followup study will examine the benefits of one baby aspirin (81 mg) with and without Vitamin D, read about it here. I should note that other pain medications do not have this blood-thinning effect, and would not be expected to have the same benefit.

While it seems likely that 2 baby aspirins might be better in fat people, or one full aspirin every other day, taking a lot more than this is deadly. During the Spanish flu some patients were given as much as 80 adult aspirins per day. It likely killed them. As Paracelsus noted, the difference between a cure and a poison is the dose.

Robert Buxbaum, November 27, 2020.

Vitamin A and E, killer supplements; B, C, and D are meh.

It’s often assumed that vitamins and minerals are good for you, so good for you that people buy all sorts of supplements providing more than the normal does in hopes of curing disease. Extra doses are a mistake unless you really have a mis-balanced diet. I know of no material that is good in small does that is not toxic in large doses. This has been shown to be so for water, exercise, weight loss, and it’s true for vitamins, too. That’s why there is an RDA (a Recommended Daily Allowance). 

Lets begin with Vitamin A. That’s beta carotene and its relatives, a vitamin found in green and orange fruits and vegetables. In small doses it’s good. It prevents night blindness, and is an anti-oxidant. It was hoped that Vitamin A would turn out to cure cancer too. It didn’t. In fact, it seems to make cancer worse. A study was preformed with 1029 men and women chosen random from a pool that was considered high risk for cancer: smokers, former smokers, and people exposed to asbestos. They were given either15 mg of beta carotene and 25,000 IU of vitamin A (5 times the RDA) or a placebo. Those taking the placebo did better than those taking the vitamin A. The results were presented in the New England Journal of Medicine, read it here, with some key findings summarized in the graph below.

Comparison of cumulative mortality and cardiovascular disease between those receiving Vitamin A (5 times RDA) and those receiving a placebo. From Omenn et. al, Clearly, this much vitamin A does more harm than good.

The main causes of death were, as typical, cardiovascular disease and cancer. As the graph shows, the rates of death were higher among people getting the Vitamin A than among those getting nothing, the placebo. Why that is so is not totally clear, but I have a theory that I presented in a paper at Michigan state. The theory is that your body uses oxidation to fight cancer. The theory might be right, or wrong, but what is always noticed is that too much of a good thing is never a good thing. The excess deaths from vitamin A were so significant that the study had to be cancelled after 5 1/2 years. There was no responsible way to continue. 

Vitamin E is another popular vitamin, an anti-oxidant, proposed to cure cancer. As with the vitamin A study, a large number of people who were at high risk  were selected and given either a large dose  of vitamin or a placebo. In this case, 35,000 men over 50 years old were given either vitamin E (400 to 660 IU, about 20 times the RDA) and/or selenium or a placebo. Selenium was added to the test because, while it isn’t an antioxidant, it is associated with elevated levels of an anti-oxidant enzyme. The hope was that these supplements would prevent cancer and perhaps ward off Alzheimer’s too. The full results are presented here, and the key data is summarized in the figure below. As with vitamin A, it turns out that high doses of vitamin E did more harm than good. It dramatically increased the rate of cancer and promoted some other problems too, including diabetes.  This study had to be cut short, to only 7 years, because  of the health damage observed. The long term effects were tracked for another two years; the negative effects are seen to level out, but there is still significant excess mortality among the vitamin takers. 

Cumulative incidence of prostate cancer with supplements of selenium and/or vitamin E compared to placebo.

Cumulative incidence of prostate cancer with supplements of selenium and/or vitamin E compared to placebo.

Selenium did not show any harmful or particularly beneficial effects in these tests, by the way, and it may have reduced the deadliness of the Vitamin A.. 

My theory, that the body fights cancer and other disease by oxidation, by rusting it away, would explain why too much antioxidant will kill you. It laves you defenseless against disease As for why selenium didn’t cause excess deaths, perhaps there are other mechanisms in play when the body sees excess selenium when already pumped with other anti oxidant. We studied antioxidant health foods (on rats) at Michigan State and found the same negative effects. The above studies are among the few done with humans. Meanwhile, as I’ve noted, small doses of radiation seem to do some good, as do small doses of chocolate, alcohol, and caffeine. The key words here are “small doses.” Alcoholics do die young. Exercise helps too, but only in moderation, and since bicycle helmets discourage bicycling, the net result of bicycle helmet laws may be to decrease life-span

What about vitamins B, C, and D? In normal doses, they’re OK, but as with vitamin A and E you start to see medical problems as soon as you start taking more– about  12 times the RDA. Large does of vitamin B are sometimes recommended by ‘health experts’ for headaches and sleeplessness. Instead they are known to produce skin problems, headaches and memory problems; fatigue, numbness, bowel problems, sensitivity to light, and in yet-larger doses, twitching nerves. That’s not as bad as cancer, but it’s enough that you might want to take something else for headaches and sleeplessness. Large does of Vitamin C and D are not known to provide any health benefits, but result in depression, stomach problems, bowel problems, frequent urination, and kidney stones. Vitamin C degrades to uric acid and oxalic acid, key components of kidney stones. Vitamin D produces kidney stones too, in this case by increasing calcium uptake and excretion. A recent report on vitamin D from the Mayo clinic is titled: Vitamin D, not as toxic as first thought. (see it here). The danger level is 12 times of the RDA, but many pills contain that much, or more. And some put the mega does in a form, like gummy vitamins” that is just asking to be abused by a child. The pills positively scream, “Take too many of me and be super healthy.”

It strikes me that the stomach, bowel, and skin problems that result from excess vitamins are just the problems that supplement sellers claim to cure: headaches, tiredness, problems of the nerves, stomach, and skin.  I’d suggest not taking vitamins in excess of the RDA — especially if you have skin, stomach or nerve problems. For stomach problems; try some peniiiain cheese. If you have a headache, try an aspirin or an advil. 

In case you should want to know what I do for myself, every other day or so, I take 1/2 of a multivitamin, a “One-A-Day Men’s Health Formula.” This 1/2 pill provides 35% of the RDA of Vitamin A, 37% of the RDA of Vitamin E, and 78% of the RDA of selenium, etc. I figure these are good amounts and that I’ll get the rest of my vitamins and minerals from food. I don’t take any other herbs, oils, or spices, either, but do take a baby aspirin daily for my heart. 

Robert Buxbaum, May 23, 2019. I was responsible for the statistics on several health studies while at MichiganState University (the test subjects were rats), and I did work on nerves, and on hydrogen in metals, and nuclear stuff.  I’ve written about statistics too, like here, talking about abnormal distributions. They’re common in health studies. If you don’t do this analysis, it will mess up the validity of your ANOVA tests. That said,  here’s how you do an anova test