Disease, atom bombs, and R-naught

A key indicator of the speed and likelihood of a major disease outbreak is the number of people that each infected person is likely to infect. This infection number is called R-naught, or Ro; it is shown in the table below for several major plague diseases.

R-naught - communicability for several contagious diseases, CDC.

R-naught – infect-ability for several contagious diseases, CDC.

Of the diseases shown, measles is the most communicable, with an Ro of 12 to 18. In an unvaccinated population, one measles-infected person will infect 12- 18 others: his/her whole family and/ or most of his/her friends. After two weeks or so of incubation, each of the newly infected will infect another 12-18. Traveling this way, measles wiped out swaths of the American Indian population in just a few months. It was one of the major plagues that made America white.

While Measles is virtually gone today, Ebola, SARS, HIV, and Leprosy remain. They are far less communicable, and far less deadly, but there is no vaccine. Because they have a low Ro, outbreaks of these diseases move only slowly through a population with outbreaks that can last for years or decades.

To estimate of the total number of people infected, you can use R-naught and the incubation-transmission time as follows:

Ni = Row/wt

where Ni is the total number of people infected at any time after the initial outbreak, w is the number of weeks since the outbreak began, and wt is the average infection to transmission time in weeks.

For measles, wt is approximately 2 weeks. In the days before vaccine, Ro was about 15, as on the table, and

Ni = 15w/2.

In 2 weeks, there will be 15 measles infected people, in 4 weeks there will be 152, or 225, and in 6 generations, or 12 weeks, you’d expect to have 11.39 million. This is a real plague. The spread of measles would slow somewhat after a few weeks, as the infected more and more run into folks who are already infected or already immune. But even when the measles slowed, it still infected quite a lot faster than HIV, Leprosy, or SARS (SARS is a form of Influenza). Leprosy is particularly slow, having a low R-naught, and an infection-transmission time of about 20 years (10 years without symptoms!).

In America, more or less everyone is vaccinated for measles. Measles vaccine works, even if the benefits are oversold, mainly by reducing the effective value of Ro. The measles vaccine is claimed to be 93% effective, suggesting that only 7% of the people that an infected person meets are not immune. If the original value of Ro is 15, as above, the effect of immunization is to reduce the value Ro in the US today to effectively 15 x 0.07 = 1.05. We can still  have measles outbreaks, but only on a small-scale, with slow-moving outbreaks going through pockets of the less-immunized. The average measles-infected person will infect only one other person, if that. The expectation is that an outbreak will be captured by the CDC before it can do much harm.

Short of a vaccine, the best we can do to stop droplet-spread diseases, like SARS, Leprosy, or Ebola is by way of a face mask. Those are worn in Hong Kong and Singapore, but have yet to become acceptable in the USA. It is a low-tech way to reduce Ro to a value below 1.0, — if R-naught is below 1.0, the disease dies out on its own. With HIV, the main way the spread was stopped was by condoms — the same, low tech solution, applied to sexually transmitted disease.

Image from VCE Physics, https://sites.google.com/site/coyleysvcephysics/home/unit-2/optional-studies/26-how-do-fusion-and-fission-compare-as-viable-nuclear-energy-power-sources/fission-and-fusion---lesson-2/chain-reactions-with-dominoes

Progress of an Atom bomb going off. Image from VCE Physics, visit here

As it happens, the explosion of an atom bomb follows the same path as the spread of disease. One neutron appears out of somewhere, and splits a uranium or plutonium atom. Each atom produces two or three more neutrons, so that we might think that R-naught = 2.5, approximately. For a bomb, Ro is found to be a bit lower because we are only interested in fast-released neutrons, and because some neutrons are lost. For a well-designed bomb, it’s OK to say that Ro is about 2.

The progress of a bomb going off will follow the same math as above:

Nn = Rot/nt

where Nn is the total number of neutrons at any time, t is the average number of nanoseconds since the first neutron hit, and nt is the transmission time — the time it takes between when a neuron is given off and absorbed, in nanoseconds.

Assuming an average neutron speed of 13 million m/s, and an average travel distance for neutrons of about 0.1 m, the time between interactions comes out to about 8 billionths of a second — 8 ns. From this, we find the number of neutrons is:

Nn = 2t/8, where t is time measured in nanoseconds (billionths of a second). Since 1 kg of uranium contains about 2 x 1024 atoms, a well-designed A-bomb that contains 1 kg, should take about 83 generations (283 = 1024). If each generation is 8 ns, as above, the explosion should take about 0.664 milliseconds to consume 100% of the fuel. The fission power of each Uranium atom is about 210 MeV, suggesting that this 1 kg bomb could release 16 billion Kcal, or as much explosive energy as 16 kTons of TNT, about the explosive power of the Nagasaki bomb (There are about 38 x10-24 Kcal/eV).

As with disease, this calculation is a bit misleading about the ease of designing a working atomic bomb. Ro starts to get lower after a significant faction of the atoms are split. The atoms begin to move away from each other, and some of the atoms become immune. Once split, the daughter nuclei continue to absorb neutrons without giving off either neutrons or energy. The net result is that an increased fraction of neutrons that are lost to space, and the explosion dies off long before the full power is released.

Computers are very helpful in the analysis of bombs and plagues, as are smart people. The Manhattan project scientists got it right on the first try. They had only rudimentary computers but lots of smart people. Even so, they seem to have gotten an efficiency of about 15%. The North Koreans, with better computers and fewer smart people took 5 tries to reach this level of competence (analyzed here). They are now in the process of developing germ-warfare — directed plagues. As a warning to them, just as it’s very hard to get things right with A-bombs, it’s very hard to get it right with disease; people might start wearing masks, or drinking bottled water, or the CDC could develop a vaccine. The danger, if you get it wrong is the same as with atom bombs: the US will not take this sort of attack lying down.

Robert Buxbaum, January 18, 2019. One of my favorite authors, Issac Asimov, died of AIDS; a slow-moving plague that he contacted from a transfusion. I benefitted vastly from Isaac Asimov’s science and science fiction, but he wrote on virtually every topic. My aim is essays that are sort-of like his, but more mathematical.

5 thoughts on “Disease, atom bombs, and R-naught

  1. Pingback: COVID-19 is worse than SARS, especially for China. | REB Research Blog

  2. Pingback: Kindness and Cholera in California | REB Research Blog

  3. Pingback: Great waves, small circles, and the spread of ideas. | REB Research Blog

  4. Pingback: Why the earth is magnetic with the north pole heading south. | REB Research Blog

  5. thg

    As I was reading your essay I began wondering when did you also become an Epidemiologist. As I read further I understood. As my training in Research Psychology generalized to epidemiology (and stood me in good stead as professionally I spent some years studying how addictions spread in a population) it seems your Physics training accomplished the same. Perhaps this useful effect of generalization speaks positively for the continued value of higher education?

    Reply

Leave a Reply