Tag Archives: sky color

Why are glaciers blue

i recently returned from a cruse trip to Alaska and, as is typical for such, a highlight of the trip was a visit to Alaska’s glaciers, in our case Hubbard Glacier, Glacier bay, and Mendenhall Glacier. All were blue — bright blue, as were the small icebergs that broke off. Glacier blocks only 2 feet across were bright blue like the glaciers themselves.

Hubbard Glacier, Alaska. Note how blue the ice is

Hubbard Glacier, Alaska. My photo. Note how blue the ice is

What made this interesting/ surprising is that I’ve seen ice sculptures that are 5 foot thick or more, and they are not significantly blue. They have a very slight tinge, but are generally more colorless than glass to my ability to tell. I asked the park rangers why the glaciers were blue, but was given no satisfactory answer. The claim was that glacier ice contained small air bubbles that scattered light the same way that air did. Another park ranger claimed that water is blue by nature, so of course the glaciers were too. The “proof” to this was that the sea was blue. Neither of these seem quite true to me, though there seamed some grains of truth. Sea water, I notice, is sort of blue, but isn’t this shade of blue, certainly not in areas that I’ve lived. Instead, sea water is a rather grayish similar to mud and sea-weeds that I’d expect to find on the sea floor. What’s more, if you look through the relatively clear water of a swimming-pool water to the white-tile bottom, you see only a slight shade of blue-green, even at the 9 foot depth where the light you see has passed through 18 feet of water. This is far more water than an iceberg thickness, and the color is nowhere near as pure blue and the intensity nowhere near as strong.

Plymouth, MI Ice sculpture -- the ice is fairly clear, like swimming pool water

Plymouth, MI Ice sculpture — the ice is fairly clear, like swimming pool water

As for the bubble explanation, it doesn’t seem quite right, either. The bubble size would be non-uniform, with many quite large resulting in a mix of scattered colors — an off white– something seen with the sky of mars. Our earth sky is a purer blue, but this is not because of scattering off of ice-crystals, dust or any other small particles, but rather scattering off the air molecules themselves. The clear blue of glaciers, and of overturned icebergs, suggests (to me) a single-size scattering entity, larger than air molecules, but much smaller than the wavelength of visible light. My preferred entity would be a new compound, a clathrate structure compound, that would be formed from air and ice at high pressures.

An overturned ice-burg is remarkably blue: far bluer than an Ice sculpture. I claim clathrates are the reason.

An overturned ice-burg is remarkably blue: far bluer than an Ice sculpture. I claim clathrates are the reason.

Sea-water forms clathrate compounds with natural gas at high pressures found at great depth. My thought is that similar compounds form between ice and one or more components of air (nitrogen, oxygen, or perhaps argon). Though no compounds of this sort have been quite identified, all these gases are reasonably soluble in water so that suggestion isn’t entirely implausible. The clathrates would be spheres, bigger than air molecules and thus should have more scattering power than the original molecules. An uneven distribution would explain the observation that the blue of glaciers is not uniform, but instead has deeper and lighter blue edges and stripes. Perhaps some parts of the glacier were formed at higher pressures one could expect that these would form more clathrate compounds, and thus more blue. One sees the most intense blue in overturned icebergs — the parts that were under the most pressure.

Robert Buxbaum, October 12, 2015. By the way, some of Alaska’s glaciers are growing and others shrinking. The rangers claimed this was the bad effect of global warming: that the shrinking glaciers should be growing and the growing ones shrinking. They also worried that despite Alaska temperatures reaching 40° below reasonably regularly, it was too warm (for whom?). The lowest recorded temperature in Fairbanks was -66°F in 1961.

The martian sky: why is it yellow?

In a previous post, I detailed my calculations concerning the color of the sky and sun. Basically the sun gives off light mostly in the yellow to green range, with fairly little red or purple. A lot of the blue and green wavelengths scatter leaving the sun  looking yellow because yellow looks yellow and the red plus blue also looks yellow because of additive color.

If you look at the sky through a spectroscope, it’s pretty blue with some green. Sky blue involves a bit of an eye trick of additive color so that we see the scattered blue + green as sky blue and not aqua. At sundown, the sun becomes reddish and the majority of the sky becomes greenish-grey as more green and yellow light gets scattered. The sky near the sun is orange as the atmosphere is thick enough to scatter orange, while the blue and green scatters out.

Now, to talk about the color of the sky on Mars, both at noon and at sunset. Except for the effect of the red color of the dust on Mars I would expect the sky to be blue on Mars, just like on earth but a lighter shade of blue as the atmosphere is thinner. When you add some red from the dust, one would expect the sky to be grey. That is, I would expect to find a simple combination of a base of sky blue (blue plus green), plus some extra red-orange light scattered from the Martian dust. In additive colors, the combination of blue-green and red-orange is grey, so that’s the color I’d expect the Martian sky to be normally. Some photos of the Martian sky match this expectation; see below. My guess is this is on a day when there was not much dust in the air, though NASA provides no details here.

martian sky; looks grey

On some days (high dust days, I assume), the Martian sky is turns a shade of yellow-green. I’d guess that’s because the red-dust absorbs the blue and some of the green spectrum, but does not actually add red. We are thus involved with subtractive color and, in subtractive color orange plus blue-green = butterscotch, not grey or pink.

Martian sky color

I now present a photo of the Martian sky at sunset. This is something really peculiar that I would not have expected ahead of time, but think I can explain now that I see it. The sky looks yellow in general, like in the photo above, but blue around the sun. I could explain this picture by saying that the blue and green of the Martian sky is being scattered by the Martian air (CO2, mostly), just like our atmosphere scatters these colors on earth; the sky near the sun looks blue, not red-orange because the Martian atmosphere is thinner (at noon there is less air to scatter light, but at sun-down the atmosphere is the same thickness as ours, more or less). The red of the dust does not show up in the sky color near the sun since the red-color is back scattered near the sun, and not front scattered. The Martian sky is yellow elsewhere where there is some front scatter of the reddish light reflecting off of the dust. This sounds plausible to me; tell me what you think.

Martian sky at sunset

Martian sky at sunset

As an aside, while I have long understood there was an experimental difference between subtractive and additive color, I have never quite understood why this should be so. Why is it that subtractive color combinations are different, and uniformly different from additive color combinations. I’d have thought you’d get more-or-less the same color if you remove red from one part of a piece of paper and remove blue from another as if you add red, purple, and yellow. A mental model I have (perhaps wrong) is that subtractive color looks like it does because of the details of the spectral absorption of the particular pigment chemicals that are typically used. Based on this model, I expect to find someday some new red and green pigments where the combination looks yellow when mixed on a page. I’ve not found it yet, but that’s my expectation — perhaps you know of a really good explanation for why additive color is so different from subtractive color.