Tag Archives: dark matter

Dark matter: why our galaxy still has its arms

Our galaxy may have two arms, or perhaps four. It was thought to be four until 2008, when it was reduced to two. Then, in 2015, it was expanded again to four arms, but recent research suggests it’s only two again. About 70% of galaxies have arms, easily counted from the outside, as in the picture below. Apparently it’s hard to get a good view from the inside.

Four armed, spiral galaxy, NGC 2008. There is a debate over whether our galaxy looks like this, or if there are only two arms. Over 70% of all galaxies are spiral galaxies. 

Logically speaking, we should not expect a galaxy to have arms at all. For a galaxy to have arms, it must rotate as a unit. Otherwise, even if the galaxy had arms when it formed, it would lose them by the time the outer rim rotated even once. As it happens we know the speed of rotation and age of galaxies; they’ve all rotated 10 to 50 times since they formed.

For stable rotation, the rotational acceleration must match the force of gravity and this should decrease with distances from the massive center. Thus, we’d expect that the stars should circle much faster the closer they are to the center of the galaxy. We see that Mercury circles the sun much faster than we do, and that we circle much faster than the outer planets. If stars circled the galactic core this way, any arm structure would be long gone. We see that the galactic arms are stable, and to explain it, we’ve proposed the existence of lots of unseen, dark matter. This matter has to have some peculiar properties, behaving as a light gas that doesn’t spin with the rest of the galaxy, or absorb light, or reflect. Some years ago, I came to believe that there was only one gas distribution that fit, and challenged folks to figure out the distribution.

The mass of the particles that made up this gas has to be very light, about 10-7 eV, about 2 x 1012 lighter than an electron, and very slippery. Some researchers had posited large, dark rocks, but I preferred to imagine a particle called the axion, and I expected it would be found soon. The particle mass had to be about this or it would shrink down to the center of he galaxy or start to spin, or fill the universe. Ina ny of these cases, galaxies would not be stable. The problem is, we’ve been looking for years, and not only have we not seen any particle like this. What’s more, continued work on the structure of matter suggests that no such particle should exist. At this point, galactic stability is a bigger mystery than it was 40 years ago.;

So how to explain galactic stability if there is no axion. One thought, from Mordechai Milgrom, is that gravity does not work as we thought. This is an annoying explanation: it involves a complex revision of General Relativity, a beautiful theory that seems to be generally valid. Another, more recent explanation is that the dark matter is regular matter that somehow became an entangled, super fluid despite the low density and relatively warm temperatures of interstellar space. This has been proposed by Justin Khoury, here. Either theory would explain the slipperiness, and the fact that the gas does not interact with light, but the details don’t quite work. For one, I’d still think that the entangled particle mass would have to be quite light; maybe a neutrino would fit (entangled neutrinos?). Super fluids don’t usually exist at space temperatures and pressures, and long distances (light years) should preclude entanglements, and neutrinos don’t seem to interact at all.

Sabine Hossenfelder suggests a combination of modified gravity and superfluidity. Some version of this might fit observations better, but doubles the amount of new physics required. Sabine does a good science video blog, BTW, with humor and less math. She doesn’t believe in Free will or religion, or entropy. By her, the Big Bang was caused by a mystery particle called an inflateon that creates mass and energy from nothing. She claims that the worst thing you can do in terms of resource depletion is have children, and seems to believe religious education is child abuse. Some of her views I agree with, with many, I do not. I think entropy is fundamental, and think people are good. Also, I see no advantage in saying “In the beginning an inflateon created the heavens and the earth”, but there you go. It’s not like I know what dark matter is any better than she does.

There are some 200 billion galaxies, generally with 100 billion stars. Our galaxy is about 150,000 light years across, 1.5 x 1018 km. It appears to behave, more or less, as a solid disk having rotated about 15 full turns since its formation, 10 billion years ago. The speed at the edge is thus about π x 1.5 x 1018 km/ 3 x 1016 s = 160km/s. That’s not relativistic, but is 16 times the speed of our fastest rockets. The vast majority of the mass of our galaxy would have to be dark matter, with relatively little between galaxies. Go figure.

Robert Buxbaum, May 24, 2023. I’m a chemical engineer, PhD, but studied some physics and philosophy.

Two things are infinite

Einstein is supposed to have commented that there are only two things that are infinite: the size of the universe and human stupidity, and he wasn’t sure about the former.

While Einstein still appears to be correct about the latter infinite, there is now more disagreement about the size of the universe. In Einstein’s day, it was known that the universe appeared to have originated in a big bang with all mass radiating outward at a ferocious rate. If the mass of the universe were high enough, and the speed were slow enough the universe would be finite and closed in on itself. That is, it would be a large black hole. But in Einstein’s day, the universe didn’t look to have enough mass. It thus looked like the universe was endless, but non-uniform. It appeared to be mostly filled with empty space — something that kept us from frying from the heat of distant stars.

Since Einstein’s day we’ve discovered more mass in the universe, but not quite enough to make us a black hole given the universe’s size. We’ve discovered neutron stars and black holes, dark concentrated masses, but not enough of them. We’ve discovered neutrinos, tiny neutral particles that fill space, and we’ve shown that they have rest-mass enough that neutrinos are now thought to make up most of the mass of the universe. But even with these dark-ish matter, we still have not found enough for the universe to be non-infinite, a black hole. Worse yet, we’ve discovered dark energy, something that keeps the universe expanding at nearly the speed of light when you’d think it should have slowed by now; this fast expansion makes it ever harder to find enough mass to close the universe (why we’d want to close it is an aesthetic issue discussed below).

Still, there is evidence for another, smaller mass item floating in space, the axion. This particle, and it’s yet-smaller companion, the axiono, may be the source of both the missing dark matter and the dark energy, see figure below. Axions should have masses about 10-7 eV, and should interact enough with matter to explain why there is more matter than antimatter while leaving the properties of matter otherwise unchanged. From normal physics, you’d expect an equal amount of matter and antimatter as antimatter is just matter moving backwards in time. Further, the light mass and weak interactions could allow axions to provide a halo around galaxies (helpful for galactic stability).

Mass of the Universe with Axions, no axions. Here is a plot from a recent SUSY talk (2010) http://susy10.uni-bonn.de/data/KimJEpreSUSY.pdf

Mass of the Universe with Axions, no axions. Here is a plot from a recent SUSY talk (2010) http://susy10.uni-bonn.de/data/KimJEpreSUSY.pdf

The reason you’d want the universe to be closed is aesthetic. The universe is nearly closed, if you think in terms of scientific numbers, and it’s hard to see why the universe should not then be closed. We appear to have an awful lot of mass, in terms of grams or kg, but appear to have only 20% of the required mass for a black hole. In terms of orders of magnitudes we are so close that you’d think we’d have 100% of the required mass. If axions are found to exist, and the evidence now is about 50-50, they will interact with strong magnetic fields so that they change into photons and photons change into axions. It is possible that the mass this represents will be the missing dark matter allowing our universe to be closed, and will be the missing dark energy.

As a final thought I’ve always wondered why religious leaders have been so against mention of “the big bang.” You’d think that the biggest boost to religion would be knowledge that everything appeared from nothing one bright and sunny morning, but they don’t seem to like the idea at all. If anyone who can explain that to me, I’d appreciate it. Thanks, Robert E. B.