Tag Archives: cars

Statistics of death and taxes — death on tax day

Strange as it seems, Americans tend to die in road accidents on tax-day. This deadly day is April 15 most years, but on some years April 15th falls out on a weekend and the fatal tax day shifts to April 16 or 17. Whatever weekday it is, about 8% more people die on the road on tax day than on the same weekday a week earlier or a week later; data courtesy of the US highway safety bureau and two statisticians, Redelmeier and Yarnell, 2014.

Forest plot of individuals in fatal road crashes over 30 years. X-axis shows relative increase in risk on tax days compared to control days expressed as odds ratio. Y-axis denotes subgroup (results for full cohort in final row). Column data are counts of individuals in crashes. Analytic results expressed with 95% confidence intervals setting control days as referent. Results show increased risk on tax day for full cohort, similar increase for 25 of 27 subgroups, and all confidence intervals overlapping main analysis. Recall that odds ratios are reliable estimates of relative risk when event rates are low from an individual driver’s perspective.

Forest plot of individuals in fatal road crashes for the 30 years to 2008  on US highways (Redelmeier and Yarnell, 2014). X-axis shows relative increase in risk on tax days compared to control days expressed as odds ratio. Y-axis denotes subgroup (results for full cohort in final row). Column data are counts of individuals in crashes (there are twice as many control days as tax days). Analytic results are 95% confidence intervals based on control days as referent. Dividing the experimental subjects into groups is a key trick of experimental design.

To confirm that the relation isn’t a fluke, the result of well-timed ice storms or football games, the traffic death data was down into subgroups by time, age, region etc– see figure. Each groups showed more deaths than on the average of the day a week before and after.

The cause appears unrelated to paying the tax bill, as such. The increase is near equal for men and women; with alcohol and without, and for those over 18 and under (presumably those under 18 don’t pay taxes). The death increase isn’t concentrated at midnight either, as might be expected if the cause were people rushing to the post office. The consistency through all groups suggests this is not a quirk of non-normal data, nor a fluke but a direct result of  tax-day itself.Redelmeier and Yarnell suggest that stress — the stress of thinking of taxes — is the cause.

Though stress seems a plausible explanation, I’d like to see if other stress-related deaths are more common on tax day — heart attack or stroke. I have not done this, I’m sorry to say, and neither have they. General US death data is not tabulated day by day. I’ve done a quick study of Canadian tax-day deaths though (unpublished) and I’ve found that, for Canadians, Canadian tax day is even more deadly than US tax day is for Americans. Perhaps heart attack and stroke data is available day by day in Canada (?).

Robert Buxbaum, December 12, 2014. I write about all sorts of stuff. Here’s my suggested, low stress income tax structure, and a way to reduce/ eliminate income taxes: tariffs– they worked till the Civil war. Here’s my thought on why old people have more fatal car accidents per mile driven.

Seniors are not bad drivers.

Seniors cause accidents, but need to get places too

Seniors are often made fun of for confusion and speeding, but it’s not clear they speed, and it is clear they need to get places. Would reduced speed limits help them arrive alive?

Seniors have more accidents per-mile traveled than middle age drivers. As shown on the chart below, older Canadians, 75+, get into seven times more fatal accidents per mile than 35 to 55 year olds. At first glance, this would suggest they are bad drivers who should be kept from the road, or at least made to drive slower. But I’m not so sure they are bad drivers, and am pretty certain that lower speed limits should not be generally imposed. I suspect that a lot of the problem comes from the a per-mile basis comparison with folks who drive long distances on the same superhighways instead of longer, leisurely drives on country roads. I suspect that, on a per-hour basis, the seniors would look a lot safer, and on a per highway-mile basis they might look identical to younger drivers.

Canadian Vehicle Survey, 2001, Statistics Canada, includes drivers of light duty vehicles.

Deaths per billion km. Canadian Vehicle Survey, 2001, Statistics Canada, includes light duty vehicles.

Another source of misunderstanding, I find, is that comparisons tend to overlook how very low the accident rates are. The fatal accent rate for 75+ year old drivers sounds high when you report it as 20 deaths per billion km. But that’s 50,000,000 km between fatalities, or roughly one fatality for each 1300 drives around the earth. In absolute terms it’s nothing to worry about. Old folks driving provides far fewer deaths per km than 12-29 year olds walking, and fewer deaths per km than for 16-19 year olds driving.

When starting to research this essay, I thought I’d find that the high death rates were the result of bad reaction times for the elderly. I half expected to find that reduced speed limits for them helped. I’ve not found any data directly related to reduced speeds, but now think that lowered speed limits would not help them any more than anyone else. I note that seniors drive for pleasure more than younger folks and do a lot more short errand drives too — to the stores, for example. These are places where accidents are more common. By contrast, 40 to 70 year olds drive more miles on roads that are relatively safe.

Don't walk, especially if you're old.

Don’t walk, especially if you’re old. Netherlands data, 2001-2005 fatalities per billion km.

The Netherlands data above suggest that any proposed solution should not involve getting seniors out of their cars. Not only do seniors find walking difficult, statistics suggest walking is 8 to 10 times more dangerous than driving, and bicycling is little better. A far better solution, I suspect, is reduced speeds for everyone on rural roads. If you’re zipping along a one-lane road at the posted 40, 55, or 60 mph and someone backs out of a driveway, you’re toast. The high posted speeds on these roads pose a particular danger to bicyclists and motorcyclists of all ages – and these are folks who I suspect drive a lot on the rural roads. I suspect that a 5 mph reduction would do quite a lot.

For automobiles on super-highways, it may be worthwhile to increase the speed limits. As things are now, the accident fatality rates are near zero, and the main problem may be the time wasted behind the wheel – driving from place to place. I suspect that an automobile speed limit raise to 80 mph would make sense on most US and Canadian superhighways; it’s already higher on the Autobahn in Germany.

Robert Buxbaum, November 24, 2014. Expect an essay about death on tax-day, coming soon. I’ve also written about marijuana, and about ADHD.

Hydrogen cars and buses are better than Tesla

Hydrogen fueled cars and buses are as clean to drive as battery vehicles and have better range and faster fueling times. Cost-wise, a hydrogen fuel tank is far cheaper and lighter than an equivalent battery and lasts far longer. Hydrogen is likely safer because the tanks do not carry their oxidant in them. And the price of hydrogen is relatively low, about that of gasoline on a per-mile basis: far lower than batteries when the cost of battery wear-out is included. Both Presidents Clinton and Bush preferred hydrogen over batteries, but the current administration favors batteries. Perhaps history will show them correct, but I think otherwise. Currently, there is not a hydrogen bus, car, or boat making runs at Disney’s Experimental Community of Tomorrow (EPCOT), nor is there an electric bus car or boat. I suspect it’s a mistake, at least convening the lack of a hydrogen vehicle. 

The best hydrogen vehicles on the road have more range than the best electric vehicle, and fuel faster. The hydrogen powered, Honda Clarity debuted in 2008. It has a 270 mile range and takes 3-5 minutes to fuel with hydrogen at 350 atm, 5150 psi. By contrast, the Tesla S-sedan that debuted in 2012 claims only a 208 mile range for its standard, 60kWh configuration (the EPA claims: 190 miles) and requires three hours to charge using their fastest charger, 20 kW.

What limits the range of battery vehicles is that the stacks are very heavy and expensive. Despite using modern lithium-ion technology, Tesla’s 60 kWh battery weighs 1050 lbs including internal cooling, and adds another 250 lbs to the car for extra structural support. The Clarity fuel system weighs a lot less. The hydrogen cylinders weigh 150 lb and require a fuel cell stack (30 lb) and a smaller lithium-ion battery for start-up (90 lb). The net effect is that the Clarity weighs 3582 lbs vs 4647 lbs for the Tesla S. This extra weight of the Tesla seems to hurt its mileage by about 10%. The Tesla gets about 3.3 mi/kWh or 0.19 mile/lb of battery versus 60 miles/kg of hydrogen for the Clarity suggesting  3.6 mi/kWh at typical efficiencies. 

High pressure hydrogen tanks are smaller than batteries and cheaper per unit range. The higher the pressure the smaller the tank. The current Clarity fuels with 350 atm, 5,150 psi hydrogen, and the next generation (shown below) will use higher pressure to save space. But even with 335 atm hydrogen (5000 psi) a Clarity could fuel a 270 mile range with four, 8″ diameter tanks (ID), 4′ long. I don’t know how Honda makes its hydrogen tanks, but suitable tanks might be made from 0.065″ Maranging (aged) stainless steel (UTS = 350,000 psi, density 8 g/cc), surrounded by 0.1″ of aramid fiber (UTS = 250,000 psi, density = 1.6 g/cc). With this construction, each tank would weigh 14.0 kg (30.5 lbs) empty, and hold 11,400 standard liters, 1.14 kg (2.5 lb) of hydrogen at pressure. These tanks could cost $1500 total; the 270 mile range is 40% more Than the Tesla S at about 1/10 the cost of current Tesla S batteries The current price of a replacement Tesla battery pack is $12,000, subsidized by DoE; without the subsidy, the likely price would be $40,000.

Next generation Honda fuel cell vehicle prototype at the 2014 Detroit Auto Show.

Next generation Honda fuel cell vehicle prototype at the 2014 Detroit Auto Show.

Currently hydrogen is more expensive than electricity per energy value, but my company has technology to make it cheaply and more cleanly than electricity. My company, REB Research makes hydrogen generators that produce ultra pure hydrogen by steam reforming wow alcohol in a membrane reactor. A standard generator, suitable to a small fueling station outputs 9.5 kg of hydrogen per day, consuming 69 gal of methanol-water. At 80¢/gal for methanol-water, and 12¢/kWh for electricity, the output hydrogen costs $2.50/kg. A car owner who drove 120,000 miles would spend $5,000 on hydrogen fuel. For that distance, a Tesla owner would spend only $4400 on electricity, but would have to spend another $12,000 to replace the battery. Tesla batteries have a 120,000 mile life, and the range decreases with age. 

For a bus or truck at EPCOT, the advantages of hydrogen grow fast. A typical bus is expected to travel much further than 120,000 miles, and is expected to operate for 18 hour shifts in stop-go operation getting perhaps 1/4 the miles/kWh of a sedan. The charge time and range advantages of hydrogen build up fast. it’s common to build a hydrogen bus with five 20 foot x 8″ tanks. Fueled at 5000 psi., such buses will have a range of 420 miles between fill-ups, and a total tank weight and cost of about 600 lbs and $4000 respectively. By comparison, the range for an electric bus is unlikely to exceed 300 miles, and even this will require a 6000 lb., 360 kWh lithium-ion battery that takes 4.5 hours to charge assuming an 80 kW charger (200 Amps at 400 V for example). That’s excessive compared to 10-20 minutes for fueling with hydrogen.

While my hydrogen generators are not cheap: for the one above, about $500,000 including the cost of a compressor, the cost of an 80 kW DC is similar if you include the cost to run a 200 Amp, 400 V power line. Tesla has shown there are a lot of people who value clean, futuristic transport if that comes with comfort and style. A hydrogen car can meet that handily, and can provide the extra comforts of longer range and faster refueling.

Robert E. Buxbaum, February 12, 2014 (Lincoln’s birthday). Here’s an essay on Lincoln’s Gettysburg address, on the safety of batteries, and on battery cost vs hydrogen. My company, REB Research makes hydrogen generators and purifiers; we also consult.

Camless valves and the Fiat-500

One of my favorite automobile engine ideas is the use of camless, electronic valves. It’s an idea whose advantages have been known for 100 years or more, and it’s finally going to be used on a mainstream, commercial car — on this year’s Fiat 500s. Fiat is not going entirely camless, but the plan is to replace the cams on the air intake valves with solenoids. A normal car engine uses cams and lifters to operate the poppet valves used to control the air intake and exhaust. Replacing these cams and lifters saves some weight, and allows the Fiat-500 to operate more efficiently at low power by allowing the engine to use less combustion energy to suck vacuum. The Fiat 500 semi-camless technology is called Multiair: it’s licensed from Valeo (France), and appeared as an option on the 2010 Alfa Romeo.

How this saves mpg is as follows: at low power (idling etc.), the air intake of a normal car engine is restricted creating a fairly high vacuum. The vacuum restriction requires energy to draw and reduces the efficiency of the engine by decreasing the effective compression ratio. It’s needed to insure that the car does not produce too much NOx when idling. In a previous post, I showed that the rate of energy wasted by drawing this vacuum was the vacuum pressure times the engine volume and the rpm rate; I also mentioned some classic ways to reduce this loss (exhaust recycle and adding water).

Valeo’s/Fiat’s semi-camless design does nothing to increase the effective compression ratio at low power, but it reduces the amount of power lost to vacuum by allowing the intake air pressure to be higher, even at low power demand. A computer reduces the amount of air entering the engine by reducing the amount of time that the intake valve is open. The higher air pressure means there is less vacuum penalty, both when the valve is open even when the valve is closed. On the Alfa Romeo, the 1.4 liter Multiair engine option got 8% better gas mileage (39 mpg vs 36 mpg) and 10% more power (168 hp vs 153 hp) than the 1.4 liter cam-driven engine.

David Bowes shows off his latest camless engines at NAMES, April 2013.

David Bowes shows off his latest camless engines at NAMES, April 2013.

Fiat used a similar technology in the 1970s with variable valve timing (VVT), but that involved heavy cams and levers, and proved to be unreliable. In the US, some fine engineers had been working on solenoids, e.g. David Bowes, pictured above with one of his solenoidal engines (he’s a sometime manufacturer for REB Research). Dave has built engines with many cycles that would be impractical without solenoids, and has done particularly nice work reducing the electric use of the solenoid.

Durability may be a problem here too, as there is no other obvious reason that Fiat has not gone completely camless, and has not put a solenoid-controlled valve on the exhaust too. One likely reason Fiat didn’t do this is that solenoidal valves tend to be unreliable at the higher temperatures found in exhaust. If so, perhaps they are unreliable on the intake too. A car operated at 1000-4000 rpm will see on the order of 100,000,000 cycles in 25,000 miles. No solenoid we’ve used has lasted that many cycles, even at low temperatures, but most customers expect their cars to go more than 25,000 miles without needing major engine service.

We use solenoidal pumps in our hydrogen generators too, but increase the operating live by operating the solenoid at only 50 cycles/minute — maximum, rather than 1000- 4000. This should allow our products to work for 10 years at least without needing major service. Performance car customers may be willing to stand for more-frequent service, but the company can’t expect ordinary customers to go back to the days where Fiat stood for “Fix It Again Tony.”

Hydrogen versus Battery Power

There are two major green energy choices that people are considering to power small-to-medium size, mobile applications like cars and next generation, drone airplanes: rechargeable, lithium-ion batteries and hydrogen /fuel cells. Neither choice is an energy source as such, but rather a clean energy carrier. That is, batteries and fuel cells are ways to store and concentrate energy from other sources, like solar or nuclear plants for use on the mobile platform.

Of these two, rechargeable batteries are the more familiar: they are used in computers, cell phones, automobiles, and the ill-fated, Boeing Dreamliner. Fuel cells are less familiar but not totally new: they are used to power most submarines and spy-planes, and find public use in the occasional, ‘educational’ toy. Fuel cells provided electricity for the last 30 years of space missions, and continue to power the international space station when the station is in the dark of night (about half the time). Batteries have low energy density (energy per mass or volume) but charging them is cheap and easy. Home electricity costs about 12¢/kWhr and is available in every home and shop. A cheap transformer and rectifier is all you needed to turn the alternating current electricity into DC to recharge a battery virtually anywhere. If not for the cost and weight of the batteries, the time to charge the battery (usually and hour or two), batteries would be the obvious option.

Two obvious problems with batteries are the low speed of charge and the annoyance of having to change the battery every 500 charges or so. If one runs an EV battery 3/4 of the way down and charges it every week, the battery will last 8 years. Further, battery charging takes 1-2 hours. These numbers are acceptable if you use the car only occasionally, but they get more annoying the more you use the car. By contrast, the tanks used to hold gasoline or hydrogen fill in a matter of minutes and last for decades or many thousands of fill-cycles.

Another problem with batteries is range. The weight-energy density of batteries is about 1/20 that of gasoline and about 1/10 that of hydrogen, and this affects range. While gasoline stores about 2.5 kWhr/kg including the weight of the gas tank, current Li-Ion batteries store far less than this, about 0.15 kWhr/kg. The energy density of hydrogen gas is nearly that of gasoline when the efficiency effect is included. A 100 kg of hydrogen tank at 10,000 psi will hold 8 kg of hydrogen, or enough to travel about 350 miles in a fuel-cell car. This is about as far as a gasoline car goes carrying 60 kg of tank + gasoline. This seems acceptable for long range and short-range travel, while the travel range with eVs is more limited, and will likely remain that way, see below.

The volumetric energy density of compressed hydrogen/ fuel cell systems is higher than for any battery scenario. And hydrogen tanks are far cheaper than batteries. From Battery University. http://batteryuniversity.com/learn/article/will_the_fuel_cell_have_a_second_life

The volumetric energy density of compressed hydrogen/ fuel cell systems is higher than for any battery scenario. And hydrogen tanks are far cheaper than batteries. From Battery University. http://batteryuniversity.com/learn/article/will_the_fuel_cell_have_a_second_life

Cost is perhaps the least understood problem with batteries. While electricity is cheap (cheaper than gasoline) battery power is expensive because of the high cost and limited life of batteries. Lithium-Ion batteries cost about $2000/kWhr, and give an effective 500 charge/discharge cycles; their physical life can be extended by not fully charging them, but it’s the same 500 cycles. The effective cost of the battery is thus $4/kWhr (The battery university site calculates $24/kWhr, but that seems overly pessimistic). Combined with the cost of electricity, and the losses in charging, the net cost of Li-Ion battery power is about $4.18/kWhr, several times the price of gasoline, even including the low efficiency of gasoline engines.

Hydrogen prices are much lower than battery prices, and nearly as low as gasoline, when you add in the effect of the high efficiency fuel cell engine. Hydrogen can be made on-site and compressed to 10,000 psi for less cost than gasoline, and certainly less cost than battery power. If one makes hydrogen by electrolysis of water, the cost is approximately 24¢/kWhr including the cost of the electrolysis unit.While the hydrogen tank is more expensive than a gasoline tank, it is much cheaper than a battery because the technology is simpler. Fuel cells are expensive though, and only about 50% efficient. As a result, the as-used cost of electrolysis hydrogen in a fuel cell car is about 48¢/kWhr. That’s far cheaper than battery power, but still not cheap enough to encourage the sale of FC vehicles with the current technology.

My company, REB Research provides another option for hydrogen generation: The use of a membrane reactor to make it from cheap, easy to transport liquids like methanol. Our technology can be used to make hydrogen either at the station or on-board the car. The cost of hydrogen made this way is far cheaper than from electrolysis because most of the energy comes from the methanol, and this energy is cheaper than electricity.

In our membrane reactors methanol-water (65-75% Methanol), is compressed to 350 psi, heated to 350°C, and reacted to produce hydrogen that is purified as it is made. CH3OH + H2O –> 3H2 + CO2, with the hydrogen extracted through a membrane within the reactor.

The hydrogen can be compressed to 10,000 psi and stored in a tank on board an automobile or airplane, or one can choose to run this process on-board the vehicle and generate it from liquid fuel as-needed. On-board generation provides a saving of weight, cost, and safety since you can carry methanol-water easily in a cheap tank at low pressure. The energy density of methanol-water is about 1/2 that of gasoline, but the fuel cell is about twice as efficient as a gasoline engine making the overall volumetric energy density about the same. Not including the fuel cell, the cost of energy made this way is somewhat lower than the cost of gasoline, about 25¢/kWhr; since methanol is cheaper than gasoline on a per-energy basis. Methanol is made from natural gas, coal, or trees — non-imported, low cost sources. And, best yet, trees are renewable.

Purifying the Hydrogen from Browns gas, HHO, etc.

Perhaps the simplest way to make hydrogen is to stick two electrodes into water and to apply electricity. The gas that is produced is mostly hydrogen, and is sometimes suitable for welding or for addition to an automobile engine to increase the mileage. Depending on the electrodes and whether salt is added to the water, the gas that is produced can be Browns gas, HHO,  town gas, or some relative of the three. We are sometimes asked if we can purify the product of this electrolysis, and my answer is typically: “maybe,” or “it depends.”

If the electrode was made of stainless steel and the water contained only KOH or baking soda, the gas that results will be mostly hydrogen and you will be able to purify it somewhat with a polymer membrane if you wish. The gas isn’t very explosive generally, since most of the oxygen that results from the electrolysis will go into rusting out the electrodes. The reaction is thus, H2O + Fe –> H2 + FeO. To see if this is what you’ve got, you can use determine the ratio of gas production with a simple version of the Hoffman apparatus made from (for example) two overturned glass jars, or by separating the electrodes with a paper towel. You can also determine the H2 to O2 ratio (if you know a bit more physics) from a measure of the amperage and the rate of gas production. The hydrogen you form with steel plates will always contain some oxygen though, as well as some nitrogen and water vapor. While a polymer membrane will remove most of the oxygen and nitrogen in this gas, it won’t remove all, and it will not generally remove any of the water. With this gas, I suspect that you would be better off just using it as it is. This is particularly so if the fraction of oxygen is more than a few percent: hydrogen with more oxygen than this becomes quite explosive.

Since this gas will contain water, you probably don’t want to store it, and you probably don’t want to purify it over a metal, either, There are two reasons for this: the water can condense out during storage, and will tend to rust whatever metal it contacts (it’s often alkaline). What’s more, the small amount of oxygen in the hydrogen is likely to react over a hydrogen storage metal to form water and heat. This may give rise to the explosion you were trying to avoid. This is clearly the quick a dirty approach to making hydrogen.

Another version of electrolysis gas, one that’s even quicker and dirtier than the above involves the use of table salt instead of KOH or baking soda. The hydrogen that results will contain chlorine as an impurity, and will be quite toxic, but it will be somewhat less explosive.The hydrogen will smell like bleach and the water you use will turn slightly greenish and quite alkaline. Both the liquid and gas are definitely bad news unless your aim was to make chlorine and alkali; this is called the chlor-alkali process for a reason. On a personal note, as a 12 year old I tried this and was confused about why I got equal volumes of gas on the cathode and anode. The reason was that I was making Cl2, and not O2: the chemistry is 2 H2O + 2 NaCl –> H2 + Cl2 + 2 NaOH. I then I used the bromide version reaction to make a nice sample of bromine liquid. That is, I used KBr instead of table salt. Bromine is brown, oily, and only sparingly soluble in water.

Another version of this electrolysis process involves the use of graphite electrodes. If you are lucky, this will give you a mix of CO and hydrogen and not H2 and O2. This mix is a called “town gas.” It’s a very good welding gas since it is not explosive. It is, however, quite toxic. If you begin to get a headache using this gas stop immediately: you’re experiencing CO poisoning. The reaction here is H2O + C –> H2 + CO. CO headaches just get worse and worse until you die. If you are not lucky here you can get HHO instead of town gas, and this is quite explosive: H2O –> H2 + 1/2 O2. The volume ratio will be a key clue as to which you are making; another clue is to put a small volume in a paper bag and light it. If the bag explodes with a terrific bang, you’ve made the wrong gas. Stop!

With all of these gases I would recommend that you add a polymer of paper membrane in the water between the electrodes. Filter paper will work fine for this as will ceramic paper; the classic membrane for this was asbestos. If you keep the two product gas streams separate as soon as they are formed, you’ll avoid most of your explosion-safety issues. Few people take this advice, I’ve found; they think there must be some simpler way. Trust me: this is the classic, safe way to make electrolysis hydrogen.

A balloon filled with pure hydrogen will not ignite. To show you, here is a 2.5 min long video where I poke a lit cigar into a mylar balloon filled with hydrogen from my membrane reactor generators. Note that this hydrogen does not even burn in the balloon because it is oxygen free. As a safety check try this with your hydrogen, but only on a much-smaller scale. Pure hydrogen will not go boom, impure hydrogen will. My advice: keep safe and healthy. You’ll feel better that way, and your heirs will be less inclined to sue me.

In case you are wondering how electrolysis hydrogen can add to the gas mileage, the simple answer is that it increases the combustion speed and the water vapor decreases the parasitic loss due to vacuum. I’ve got some more information on this here. I hope this advice helps with your car project or any other electrolysis option. In my opinion, one should use a membrane in the water to separate the components at formation in all but the smallest experiments and with the smallest amperage sources. Even these should be done only in a well-ventilated room or on a car that is parked outside of the house. Many of the great chemists of the 1800s died doing experiments like these; learn from their mistakes and stay among the living.

How hydrogen and/or water can improve automobile mileage (mpg)

In case you’ve ever wondered why it was that performance cars got such poor milage, or why you got such bad milage in the city, the biggest single problem has to do with the vacuum drawn by the engine, some of the problem has to do with the speed of combustion, some has to do with rolling friction, and some with start/stop loss too. Only a very small fraction of the energy is lost on air friction until you reach highway speeds.

Lets consider vacuum loss first as it is likely the worst offender. A typical US car, e.g. a Chevy Malibu, has a 3.5 liter engine (a performance car has an engine that’s much larger). As you toodle down a street at 35 mph, your engine is going at about 2000 rpm, or 33 rps. Since the power required to move the car is far less than the 200 hp that the car could deliver, the air intake is throttled so that the engine is sucking a vacuum of about 75 kpa (10 psi for those using English units). To calculate the power loss this entails, multiply 33*3.5*80; this is about 8662 Watts, or 12 hp. To find the energy use per mile, divide by your average speed, 25 mph (it would be 35 mph, but you sometimes stop for lights). 8 kW/25 mph = .21 kW-hr/mile. One finds, as I’ll show that the car expends more energy sucking this vacuum than pushing the car itself. This is where the majority of the city mpg goes in a normal car, but it’s worse in a high performance car is worse since the engine is bigger. In city driving, the performance mpg will be lower than for a Malibu even if the performance car is lighter, if it has better aerodynamics (it does), and if you never stop at lights.

The two other big places were city mileage goes is overcoming rolling friction and the need to stop and go at lights, stop signs, etc. The energy used for rolling friction is the force it would take to push your car on level ground when in neutral times the distance. For a typical car, the push force is about 70 lbs or 32 kgs or 315 Nt; it’s roughly proportional to the car’s weight. At 35 mph, or 15.5 m/s, the amount of power this absorbs is calculated as the product of force and speed: 15.5*315 = 4882 W, or about 6.5 hp. The energy use is 4.9 kW/35 mph =.14 kWhr/mile. The energy loss from stop lights is similar to this, about .16 kWhr/mile, something you can tell by getting the car up to speed and seeing how far it goes before it stops. It’ll go about 2-3 blocks, a little less distance than you are likely to go without having to stop. Air resistance adds a very small amount at these speeds, about 2000 W, 2.7 hp, or .05 kWhr/mile; it’s far more relevant at 65 mph, but still isn’t that large.

If you add all this together, you find the average car uses about .56 kWhr/mile. For an average density gasoline of 5.6 lb/gal, and average energy-dense gasoline, 18,000 BTU/lb, and an average car engine efficiency of 11000 BTU/kWhr, you can now predict an average city gas mileage of 16.9 mpg, about what you find experimentally. Applying the same methods to highway traffic at 65 mph, you predict .38 kWhr/mile, or 25 mpg. Your rpms are the same on the highway as in the city, but the throttle is open so you get more power and loose less to vacuum.

Now, how do you increase a car’s mpg. If you’re a Detroit automaker you could reduce the weight of the car, or you the customer can clean the junk out of your trunk. Every 35 lbs or so increases the rolling friction by about 1%. These is another way to reduce rolling friction and that’s to get low resistance tires, or keep the tires you’ve got full of air. Still, what you’d really like to do is reduce the loss to vacuum energy, since vacuum loss is a bigger drain on mpg.

The first, simple way to reduce vacuum energy loss is to run lean: that is, to add more air than necessary for combustion. Sorry to say, that’s illegal now, but in the olden days before pollution control you could boost your mpg by adjusting your carburator to add about 10% excess of air. This reduced your passing power and the air pollution folks made it illegal (and difficult) after they noticed that it excess air increased NOx emissions. The oxygen sensor on most cars keeps you from playing with the carburator these days.

Another approach is to use a much smaller engine. The Japanese and Koreans used to do this, and they got good milage as a result. The problem here is that you now had to have a very light car or you’d get very low power and low acceleration — and no American likes that. A recent approach to make up for some of the loss of acceleration is by adding a battery and an electric motor; you’re now making a hybrid car. But the batteries add significant cost, weight and complexity to these cars, and not everyone feels this is worth it. So now on to my main topic: adding steam or hydrogen.

There is plenty of excess heat on the car manifold. A simile use of this heat is to warm some water to the point where the vapor pressure is, for example, 50 kPa. The pressure from this water adds to the power of your engine by allowing a reduction in the vacuum to 50 kPa or less. This cuts the vacuum loss at low speeds. At high speed and power the car automatically increases the air pressure and the water stops evaporating, so there is no loss of power. I’m currently testing this modification on my own automobile partly for the fun of it, and partly as a preface to my next step: using the car engine heat to run the reaction CH3OH + H2O –> CO2 + H2. I’ll talk more about our efforts adding hydrogen elsewhere, but thought you might be interested in these fundamentals.

http://www.rebresearch.com

Hydrogen addition to an automobile engine

Today, I began a series of experiments putting hydrogen into my car engine. Hydrogen is a combustion promotor, increasing the flame speed significantly, even at low compositions, and it has a very high octane value, so it does not cause pre-ignition. I used my Chevy Malibu, shown, and generated the hydrogen using one of our (REB Research’s) methanol-reformer hydrogen generators. I used a small hydrogen generator we sell for gas chromatographic use, and put 280 ccm hydrogen into engine, as shown. This is enough to provide 1% of the energy content about during idle.

I’ve not measured mpg change yet (as a stationary experiment the mpg is 0), but was really looking for outward signs of knock or other engine problems. Adding 280 ccm of hydrogen should increase the flame speed by ~2%, which should increase the degree of high pressure combustion, and this should increase the mpg by about 3% or 4% if you don’t include the hydrogen energy. So far, I saw no ill effects: no ill sounds and no check engine lights.

H2_boost_in_Buxbaum_Malibu

Hydrogen added to a Chevy Malibu engine at REB Research

About half the hydrogen energy comes from waste heat of the engine, and half the methanol. Either way this energy is very cheap: methanol costs about $1.20/gal, about half of what gasoline does on a per-energy basis.  Next step is to make my hydrogen generator mobile, and check the effect on mpg. I’m glad it worked OK so far. There was a reporter watching.