Tag Archives: aluminum

Transparent, super wood

As mentioned in a previous post, wood is more among the strongest materials per unit weight, making it ideal for table tops and telephone polls. On a per pound basis, most species of wood are more than twice as strong as aluminum or mild steel. Wood’s structure is is the reason; it’s a natural composite of air-filled, aligned tubes of crystalline cellulose, held together by natural glue, lignin.

In terms of raw strength though, pounds/in2, wood is not particularly strong, only about 7000 psi (45MPa) both in tension and compression, about half the strength of aluminum. It is thus not well suited to supporting heavy structures, like skyscrapers. (I calculate the maximum height of a skyscraper here), but wood can be modified to make it stronger by removing most of the air, and replacing it with plastic. The result is a stronger, denser, flexible composite, that is typically transparent. The flower below is seen behind a sheet of transparent wood.

A picture of a flower taken through a piece of transparent super-wood.

To make a fairly strong, transparent wood, you take ordinary low-density wood (beech or balsa are good) and soak it in alkali (NaOH). This bleaches the wood, softens the cellulose, and dissolves most of the lignin. You next wash off the alkali and soak the wood in a low viscosity epoxy or acrylic. Now, put it in a vacuum chamber to remove the air — you’ll need a brick to hold the wood down in the liquid. You’ll see bubbles in the epoxy as the air leaves. Then, when the vacuum is released, the wood soaks up the epoxy or acrylic. On curing, you get a composite strong and transparent, but not super strong.

To make the wood really strong, super-strong, you need to compress the uncured, epoxy soaked wood. One method is to put it in a vice. This drives off more of the air and further aligns the cellulose fibers. You now cure it as before (you need a really slow cure epoxy or a UV-cure polymer). The resultant product have been found to have tensile strengths as high as 270 MPa in the direction of alignment, over 40,000 psi. This is three times stronger than regular aluminum, 90 MPa, (13,500 psi). It’s about the strength of the strongest normal aluminum alloy, 6061. It’s sort of expensive to make, but it’s flexible and transparent, making it suitable for space windows and solar cells. It’s the lightest flexible transparent material known. It’s biodegradable, and that’s very cool, IMHO. See here for a comparison with other, high strength, transparent composites.

Robert Buxbaum, November 10, 2022. I think further developments along this line would make an excellent high school science fair project, college thesis, or PhD research project. Compare different woods, or epoxies, different alkalis, and temperatures, or other processing ideas. How strong and transparent can you make this material, or look at other uses. Can you use it for roof solar cells, like Musk’s but lighter, or mold it for auto panels, it’s already lighter and stronger, or use it as bullet-proof glass or airplane windows.

Wood, the strongest material for some things, like table-tops

Natural wood has a lower critical strength than most modern materials, and a lower elastic constant, yet it is the strongest material for some applications because it is remarkably light and remarkably cheap on a per-volume or weight. In some important applications, high strength per volume is the important measure, and in virtually every case high strength per dollar is relevant. Consider the table top: it should support a person standing on it, as one might do to change a lightbulb, and it should not weigh too much, or cost too much.

A 250 lb man on a table. The table should not weight too much, nor cost too much, yet it should support the man.

I’ve drawn a 9 foot by 4 foot table at left, with a 250 lb person in the center. Assuming that the thickness of the table is t, the deflection in the center, ∂, is found by the formula ∂ =FL3/4Ewt3. Here, F is the downward force, 250 lbs (a bit higher if we include the weight of the table), L is the length between the supports, 6 feet = 72 inches, E is the elastic constant of the table top, 2,300,000 psi assuming ash wood, w is the width of the table, 48″, and t is the thickness, let’s say 1″.

Using the formula above, we fid that the deflection of this tabletop is 0.211″ for a force of 250 lbs. That’s not bad. The weight of the 9′ table top is 125 lbs, which is not too bad either, and the cost is likely going to be acceptable: ash is a fairly cheap, nice-looking wood.

By comparison, consider using a 1/4″ thick sheet of structural aluminum, alloy 6061. The cost will be much higher and the weight will be the same as for the 1′ thick piece of ash. That’s because the density of aluminum is 2.7 g/cc, more than three times that of ash. Aluminum 6061is four times stiffer than ash, with an elastic constant of 10,000,000 psi, but the resistance to bending is proportional to thickness cubed; and 1/4 cubed is 1/64. We thus find that the 125 lb tabletop of Al alloy will deflect 3.11 inches, about 16 times more than ash, far too much to be acceptable. We could switch to thicker aluminum, 3/8″ for example, but the weight would be 50% higher now, the cost would be yet 50% higher, and the deflection would still be too high, 0.92 inches. Things get even worse with steel since steel is yet-denser, a 1/4″ sheet of steel would deflect about as much as the 3/8″ aluminum, but would weigh about twice as muc. For this application, and many others like it, wood is likely the best choice; its light weight per strength and low cost can’t be beat.

Robert E. Buxbaum, January 11, 2022