Category Archives: electricity

Keeping your car batteries alive.

Lithium-battery cost and performance has improved so much that no one uses Ni-Cad or metal hydride batteries any more. These are the choice for tools, phones, and computers, while lead acid batteries are used for car starting and emergency lights. I thought I’d write about the care and trade-offs of these two remaining options.

As things currently stand, you can buy a 12 V, lead-acid car battery with 40 Amp-h capacity for about $95. This suggests a cost of about $200/ kWh. The price rises to $400/kWh if you only discharge half way (good practice). This is cheaper than the per-power cost of lithium batteries, about $500/ kWh or $1000/ kWh if you only discharge half-way (good practice), but people pick lithium because (1) it’s lighter, and (2) it’s generally longer lasting. Lithium generally lasts about 2000 half-discharge cycles vs 500 for lead-acid.

On the basis of cost per cycle, lead acid batteries would have been replaced completely except that they are more tolerant of cold and heat, and they easily output the 400-800 Amps needed to start a car. Lithium batteries have problems at these currents, especially when it’s hot or cold. Lithium batteries deteriorate fast in the heat too (over 40°C, 105°F), and you can not charge a lithium car battery at more than 3-4 Amps at temperatures below about 0°C, 32°F. At higher currents, a coat of lithium metal forms on the anode. This lithium can react with water: 2Li + H2O –> Li2O + H2, or it can form dendrites that puncture the cell separators leading to fire and explosion. If you charge a lead acid battery too fast some hydrogen can form, but that’s much less of a problem. If you are worried about hydrogen, we sell hydrogen getters and catalysts that remove it. Here’s a description of the mechanisms.

The best thing you can do to keep a lead-acid battery alive is to keep it near-fully charged. This can be done by taking long drives, by idling the car (warming it up), or by use of an external trickle charger. I recommend a trickle charger in the winter because it’s non-polluting. A lead-acid battery that’s kept at near full charge will give you enough charge for 3000 to 5000 starts. If you let the battery completely discharge, you get only 50 or so deep cycles or 1000 starts. But beware: full discharge can creep up on you. A new car battery will hold 40 Ampere-hours of current, or 65,000 Ampere-seconds if you half discharge. Starting the car will take 5 seconds of 600 Amps, using 3000 Amp-s or about 5% of the battery’s juice. The battery will recharge as you drive, but not that fast. You’ll have to drive for at least 500 seconds (8 minutes) to recharge from the energy used in starting. But in the winter it is common that your drive will be shorter, and that a lot of your alternator power will be sent to the defrosters, lights, and seat heaters. As a result, your lead-acid battery will not totally charge, even on a 10 minute drive. With every week of short trips, the battery will drain a little, and sooner or later, you’ll find your battery is dead. Beware and recharge, ideally before 50% discharge

A little chemistry will help explain why full discharging is bad for battery life (for a different version see Wikipedia). For the first half discharge of a lead-acid battery, the reaction Is:

Pb + 2PbO2 + 2H2SO4  –> PbSO4 + Pb2O2SO4 + 2H2O.

This reaction involves 2 electrons and has a -∆G° of >394 kJ, suggesting a reversible voltage more than 2.04 V per cell with voltage decreasing as H2SO4 is used up. Any discharge forms PbSO4 on the positive plate (the lead anode) and converts lead oxide on the cathode (the negative plate) to Pb2O2SO4. Discharging to more than 50% involves this reaction converting the Pb2O2SO4 on the cathode to PbSO4.

Pb + Pb2O2SO4 + 2H2SO4  –> 2PbSO4 + 2H2O.

This also involves two electrons, but -∆G < 394 kJ, and voltage is less than 2.04 V. Not only is the voltage less, the maximum current is less. As it happens Pb2O2SO4 is amorphous, adherent, and conductive, while PbSO4 is crystalline, not that adherent, and not-so conductive. Operating at more than 50% results in less voltage, increased internal resistance, decreased H2SO4 concentrations, and lead sulfate flaking off the electrode. Even letting a battery sit at low voltage contributes to PbSO4 flaking off. If the weather is cold enough, the low concentration H2SO4 freezes and the battery case cracks. My advice: Get out your battery charger and top up your battery. Don’t worry about overcharging; your battery charger will sense when the charge is complete. A lead-acid battery operated at near full charge, between 67 and 100% will provide 1500 cycles, about as many as lithium. 

Trickle charging my wife's car. Good for battery life. At 6 Amps, expect this to take 3-6 hours.

Trickle charging my wife’s car: good for battery life. At 6 Amps, expect a full charge to take 6 hours or more. You might want to recharge the battery in your emergency lights too. 

Lithium batteries are the choice for tools and electric vehicles, but the chemistry is different. For longest life with lithium batteries, they should not be charged fully. If you change fully they deteriorate and self-discharge, especially when warm (100°F, 40°C). If you operate at 20°C between 75% and 25% charge, a lithium-ion battery will last 2000 cycles; at 100% to 0%, expect only 200 cycles or so.

Tesla cars use lithium batteries of a special type, lithium cobalt. Such batteries have been known to explode, but and Tesla adds sophisticated electronics and cooling systems to prevent this. The Chevy Volt and Bolt use lithium batteries too, but they are less energy-dense. In either case, assuming $1000/kWh and a 2000 cycle life, the battery cost of an EV is about 50¢/kWh-cycle. Add to this the cost of electricity, 15¢/kWh including the over-potential needed to charge, and I find a total cost of operation of 65¢/kWh. EVs get about 3 miles per kWh, suggesting an energy cost of about 22¢/mile. By comparison, a 23 mpg car that uses gasoline at $2.80 / gal, the energy cost is 12¢/mile, about half that of the EVs. For now, I stick to gasoline for normal driving, and for long trips, suggest buses, trains, and flying.

Robert Buxbaum, January 4, 2018.

Change home air filters 3 times per year

Energy efficient furnaces use a surprisingly large amount of electricity to blow the air around your house. Part of the problem is the pressure drop of the ducts, but quite a lot of energy is lost bowing air through the dust filter. An energy-saving idea: replace the filter on your furnace twice a year or more. Another idea, you don’t have to use the fanciest of filters. Dirty filters provide a lot of back-pressure especially when they are dirty.

I built a water manometer, see diagram below to measure the pressure drop through my furnace filters. The pressure drop is measured from the difference in the height of the water column shown. Each inch of water is 0.04 psi or 275 Pa. Using this pressure difference and the flow rating of the furnace, I calculated the amount of power lost by the following formula:

W = Q ∆P/ µ.

Here W is the amount of power use, Watts, Q is flow rate m3/s, ∆P = the pressure drop in Pa, and µ is the efficiency of the motor and blower, typically about 50%.

With clean filters (two different brands), I measured 1/8″ and 1/4″ of water column, or a pressure drop of 0.005 and 0.01 psi, depending on the filter. The “better the filter”, that is the higher the MERV rating, the higher the pressure drop. I also measured the pressure drop through a 6 month old filter and found it to be 1/2″ of water, or 0.02 psi or 140 Pa. Multiplying this by the amount of air moved, 1000 cfm =  25 m3 per minute or 0.42 m3/s, and dividing by the efficiency, I calculate a power use of 118 W. That is 0.118 kWh/hr. or 2.8 kWh/day.

water manometer used to measure pressure drop through the filter of my furnace. I stuck two copper tubes into the furnace, and attached a plastic hose. Pressure was measured from the difference in the water level in the hose.

The water manometer I used to measure the pressure drop through the filter of my furnace. I stuck two copper tubes into the furnace, and attached a plastic tube half filled with water between the copper tubes. Pressure was measured from the difference in the water level in the plastic tube. Each 1″ of water is 280 Pa or 0.04psi.

At the above rate of power use and a cost of electricity of 11¢/kWhr, I find it would cost me an extra 4 KWhr or about 31¢/day to pump air through my dirty-ish filter; that’s $113/year. The cost through a clean filter would be about half this, suggesting that for every year of filter use I spend an average of $57t where t is the use life of the filter.

To calculate the ideal time to change filters I set up the following formula for the total cost per year $, including cost per year spent on filters (at $5/ filter), and the pressure-induced electric cost:

$ = 5/t + 57 t.

The shorter the life of the filter, t, the more I spend on filters, but the less on electricity. I now use calculus to find the filter life that produces the minimum $, and determine that $ is a minimum at a filter life t = √5/57 = .30 years.  The upshot, then, if you filters are like mine, you should change your three times a year, or so; every 3.6 months to be super-exact. For what it’s worth, I buy MERV 5 filters at Ace or Home Depot. If I bought more expensive filters, the optimal change time would likely be once or twice per year. I figure that, unless you are very allergic or make electronics in your basement you don’t need a filter with MERV rating higher than 8 or so.

I’ve mentioned in a previous essay/post that dust starts out mostly as dead skin cells. Over time dust mites eat the skin, some pretty nasty stuff. Most folks are allergic to the mites, but I’m not convinced that the filter on your furnace dies much to isolate you from them since the mites, etc tend to hang out in your bed and clothes (a charming thought, I know).

Old fashioned, octopus furnace. Free convection.

Old fashioned, octopus furnace. Free convection.

The previous house I had, had no filter on the furnace (and no blower). I noticed no difference in my tendency to cough or itch. That furnace relied for circulation on the tendency for hot air to rise. That is, “free convection” circulated air through the home and furnace by way of “Octopus” ducts. If you wonder what a furnace like that looks like here’s a picture.

I calculate that a 10 foot column of air that is 30°C warmer than that in a house will have a buoyancy of about 0.00055 psi (1/8″ of water). That’s enough pressure to drive circulation through my home, and might have even driven air through a clean, low MERV dust filter. The furnace didn’t use any more gas than a modern furnace would, as best I could tell, since I was able to adjust the damper easily (I could see the flame). It used no electricity except for the thermostat control, and the overall cost was lower than for my current, high-efficiency furnace with its electrical blower and forced convection.

Robert E. Buxbaum, December 7, 2017. I ran for water commissioner, and post occasional energy-saving or water saving ideas. Another good energy saver is curtains. And here are some ideas on water-saving, and on toilet paper.

How Tesla invented, I think, Tesla coils and wireless chargers.

I think I know how Tesla invented his high frequency devices, and thought I’d show you, while also explaining the operation of some devices that develop from in. Even if I’m wrong in historical terms, at least you should come to understand some of his devices, and something of the invention process. Either can be the start of a great science fair project.

physics drawing of a mass on a spring, left, and of a grounded capacitor and inception coil, right.

The start of Tesla’s invention process, I think, was a visual similarity– I’m guessing he noticed that the physics symbol for a spring was the same as for an electrical, induction coil, as shown at left. A normal person would notice the similarity, and perhaps think about it for a few seconds, get no where, and think of something else. If he or she had a math background — necessary to do most any science — they might look at the relevant equations and notice that they’re different. The equation describing the force of a spring is F = -k x  (I’ll define these letters in the bottom paragraph). The equation describing the voltage in an induction coil is not very similar-looking at first glance, V = L di/dt.  But there is a key similarity that could appeal to some math aficionados: both equations are linear. A linear equation is one where, if you double one side you double the other. Thus, if you double F, you double x, and if you double V, you double dI/dt, and that’s a significant behavior; the equation z= atis not linear, see the difference?

Another linear equation is the key equation for the motion for a mass, Newton’s second law, F = ma = m d2x/dt2. This equation is quite complicated looking, since the latter term is a second-derivative, but it is linear, and a mass is the likely thing for a spring to act upon. Yet another linear equation can be used to relate current to the voltage across a capacitor: V= -1/C ∫idt. At first glance, this equation looks quite different from the others since it involves an integral. But Nicola Tesla did more than a first glance. Perhaps he knew that linear systems tend to show resonance — vibrations at a fixed frequency. Or perhaps that insight came later. 

And Tesla saw something else, I imagine, something even less obvious, except in hindsight. If you take the derivative of the two electrical equations, you get dV/dt = L d2i/dt2, and dV/dt = -1/C i . These equations are the same as for the spring and mass, just replace F and x by dV/dt and i. That the derivative of the integral is the thing itself is something I demonstrate here. At this point it becomes clear that a capacitor-coil system will show the same sort of natural resonance effects as shown by a spring and mass system, or by a child’s swing, or by a bouncy bridge. Tesla would have known, like anyone who’s taken college-level physics, that a small input at the right, resonant frequency will excite such systems to great swings. For a mass and spring,

Basic Tesla coil. A switch set off by magnetization of the iron core insures resonant frequency operation.

Basic Tesla coil. A switch set off by magnetization of the iron core insures resonant frequency operation.

resonant frequency = (1/2π) √k/m,

Children can make a swing go quite high, just by pumping at the right frequency. Similarly, it should be possible to excite a coil-capacitor system to higher and higher voltages if you can find a way to excite long enough at the right frequency. Tesla would have looked for a way to do this with a coil capacitor system, and after a while of trying and thinking, he seems to have found the circuit shown at right, with a spark gap to impress visitors and keep the voltages from getting to far out of hand. The resonant frequency for this system is 1/(2π√LC), an equation form that is similar to the above. The voltage swings should grow until limited by resistance in the wires, or by the radiation of power into space. The fact that significant power is radiated into space will be used as the basis for wireless phone chargers, but more on that later. For now, you might wish to note that power radiation is proportional to dV/dt.

A version of the above excited by AC current. In this version, you achieve resonance by adjusting the coil, capacitor and resistance to match the forcing frequency.

A more -modern version of the above excited by AC current. In this version, you achieve resonance by adjusting the coil, capacitor and resistance to match the forcing frequency.

The device above provides an early, simple way to excite a coil -capacitor system. It’s designed for use with a battery or other DC power source. There’s an electromagnetic switch to provide resonance with any capacitor and coil pair. An alternative, more modern device is shown at left. It  achieves resonance too without the switch through the use of input AC power, but you have to match the AC frequency to the resonant frequency of the coil and capacitor. If wall current is used, 60 cps, the coil and capacitor must be chosen so that  1/(2π√LC) = 60 cps. Both versions are called Tesla coils and either can be set up to produce very large sparks (sparks make for a great science fair project — you need to put a spark gap across the capacitor, or better yet use the coil as the low-voltage part of a transformer.

power receiverAnother use of this circuit is as a transmitter of power into space. The coil becomes the transmission antenna, and you have to set up a similar device as a receiver, see picture at right. The black thing at left of the picture is the capacitor. One has to make sure that the coil-capacitor pair is tuned to the same frequency as the transmitter. One also needs to add a rectifier, the rectifier chosen here is designated 1N4007. This, fairly standard-size rectifier allows you to sip DC power to the battery, without fear that the battery will discharge on every cycle. That’s all the science you need to charge an iPhone without having to plug it in. Designing one of these is a good science fair project, especially if you can improve on the charging distance. Why should you have to put your iPhone right on top of the transmitter battery. Why not allow continuous charging anywhere in your home. Tesla was working on long-distance power transmission till the end of his life. What modifications would that require?

Symbols used above: a = acceleration = d2x/dt2, C= capacitance of the capacitor, dV/dt = the rate of change of voltage with time, F = force, i = current, k = stiffness of the spring, L= inductance of the coil, m = mass of the weight, t= time, V= voltage, x = distance of the mass from its rest point.

Robert Buxbaum, October 2, 2017.