Category Archives: Engineering

Hydrogenation, how we’ve already entered the hydrogen economy

The hydrogen economy is generally thought to come in some distant future, where your car (and perhaps your home) runs on hydrogen, and the hydrogen, presumably, is made by clean nuclear or renewable solar or wind power. This is understood to be better than the current state of things where your car runs on dirty gasoline, and your home runs on coal or gas, except when the sun is shining bright and the wind is blowing hard. Our homes and cars can not run on solar or wind alone, although solar cells have become quite cheap, because solar power is only available in the daytime, basically for 6 hours, from about 9AM to 3PM. Hydrogen has been proposed as a good way to store solar and wind energy that you can’t use, but it’s not easy to store hydrogen — or is it? I’d like to suggest that, to a decent extent, we already store green hydrogen and use it to run our trucks. We store this hydrogen in the form of Diesel fuel, so you don’t realize it’s hydrogen.

Much of the oil in the United States these days comes from tar sands and shale. It doesn’t flow well at room temperature, and is too heavy and gooey for normal use. We could distill this crude oil and use only the light parts, but that would involve throwing away a huge majority of the oil. Instead we steam reform it to gasoline, ethylene and other products. The reaction is something like this, presuming an input feed of naphtha, C10H8:

C10H8 + 2 H2O –> C7H8 + C2H4 + CO2.

The C2H4 component is ethylene. We use it to make plastics. The C7H8 is called toluene. It is a component of high octane gasoline (octane rating about 114). The inventor of the process, Eugene Jules Houdry claimed to have won WWII for the allies because his secret process (Houdryflow catalytic cracking) allowed high production of lots of gasoline of very high octane, giving US and British planes and trucks higher mpg than the Germans or Japanese had. It was a great money maker, but companies can make even more by adding hydrogen.

Schematic of the hydrocracking process, from the US energy information agency

Over the last 2-3 decades, refineries have been adding catalytic hydrogenation processes. These convert high octane aromatic products, like toluene to low -octane diesel and jet fuel. These products sell for more. Aromatic toluene is exposed to hydrogen at about 500°C and 300 psi (20 bar) to produce heptane, an excellent diesel fuel with about 7% more energy content than toluene per gallon.

C7H8 + 4H2 –> C7H16.

Diesel fuel sell for about 20% more than gasoline per gallon, in part because of the higher energy content, and because Diesel engines are more efficient than gas engines. What’s more, toluene expands as it’s converted to heptane. One gallon of toluene converts to 1.16 gallons of heptane. As a result hydrogenation adds about 40% to the sales price per molecule. Refineries have found that they can make significant money this way if they can buy cheap hydrogen. Over the last few years, several refineries in Norway and Texas (high sun and wind areas) have added hydrogenators along with electrolysis units to produce the cheap hydrogen when no one needs the unwanted electricity generated when supply exceeds demand. Here is an analysis of the thermodynamics of this type of hydrogen generation.

Robert Buxbaum, May 11, 2023

Of walking sticks, canes, scepters, and wands.

Franklin’s walking stick, willed to General Washington. Now in the Smithsonian.

Many famous people carried walking sticks Washington, Churchill, Moses, Dali. Until quite recently, it was “a thing”. Benjamin Franklin willed one, now in the Smithsonian, to George Washington, to act as a sort of scepter: “My fine crab-tree walking stick, with a gold head curiously wrought in the form of the cap of liberty, I give to my friend, and the friend of mankind, General Washington. If it were a Scepter, he has merited it, and would become it. It was a present to me from that excellent woman, Madame de Forbach, the dowager Duchess of Deux-Ponts”. A peculiarity of this particular stick is that the stick is uncommonly tall, 46 1/2″. This is too tall for casual, walking use, and it’s too fancy to use as a hiking stick. Franklin himself, used a more-normal size walking stick, 36 3/8″ tall, currently in the collection of the NY Historical Society. Washington too seems to have favored a stick of more normal length.

Washington with walking stick

Walking sticks project a sort of elegance, as well as providing personal protection. Shown below is President Andrew Jackson defending himself against an assassin using his walking stick to beat off an assassin. He went on to give souvenir walking sticks to friends and political supporters. Sticks remained a common political gift for 100 years, at least through the election of Calvin Coolidge.

Andrew Jackson defends himself.

I started making walking sticks a few years back, originally for my own use, and then for others when I noticed that many folks who needed canes didn’t carry them. It was vanity, as best I could tell: the normal, “old age” cane is relatively short, about 32″. Walking with it makes you bend over; you look old and decrepit. Some of the folks who needed canes, carried hiking sticks, I noticed, about 48″. These are too tall to provide any significant support, as the only way to grasp one was from the side. Some of my canes are shown below. They are about 36″ tall, typically with a 2″ wooden ball as a head. They look good, you stand straight, and they provides support and balance when going down stairs.

Some of my walking sticks.

I typically make my sticks of American Beech, a wood of light weight, with good strength, and a high elastic modulus of elasticity, about 1.85 x106 psi. Oak, hickory, and ash are good options, but they are denser, and thus more suited to self-defense. Wood is better than metal for many applications, IMHO, as I’ve discussed elsewhere. The mathematician Euler showed the the effective strength of a walking stick does not depend on the compressive strength but rather on elastic constant via “the Euler buckling equation”, one of many tremendously useful equations developed by Leonhard Euler (1707-1783).

For a cylindrical stick, the maximum force supported by a stick is: F = π3Er4/4L2, where F is the force, r is the radius, L is the length, and E is the elastic modulus. I typically pick a diameter of 3/4″ or 7/8″, and fit the length to the customer. For a 36″ beech stick, the buckling strength is calculated to be 221 or 409 pounds respectively. I add a rubber bottom to make it non–scuff and less slip-prone. I sometimes add a rope thong, too. Here is a video of Fred Astaire dancing with this style of stick. It’s called “a pin stick”, in case you are interested because it looks like a giant pin.

Country Irishmen are sometimes depicted with a heavy walking stick called a Shillelagh. It’s used for heavier self-defense than available with a pin-stick, and is generally seen being used as a cudgel. There are Japanese versions of self defense using a lighter, 36″ stick, called a Han-bo, as shown here. There is also the wand, as seen for example in Harry Potter. It focuses magical power. Similar to this is Moses’s staff that he used in front of Pharaoh, a combination wand and hiking stick as it’s typically pictured. It might have been repurposed for the snake-on-a-stick that protects against dark forces. Dancing with a stick, Astaire style, can drive away emotional forces, while the more normal use is elegance, and avoiding slips.

Robert Buxbaum, April 20, 2023.

Rotating sail ships and why your curve ball doesn’t curve.

The Flettner-sail ship, Barbara, 1926.

Sailing ships are wonderfully economic and non-polluting. They have unlimited range because they use virtually no fuel, but they tend to be slow, about 5-12 knots, about half as fast as Diesel-powered ships, and they can be stranded for weeks if the wind dies. Classic sailing ships also require a lot of manpower: many skilled sailors to adjust the sails. What’s wanted is an easily manned, economical, hybrid ship: one that’s powered by Diesel when the wind is light, and by a simple sail system when the wind blows. Anton Flettner invented an easily manned sail and built two ships with it. The Barbara above used a 530 hp Diesel and got additional thrust, about an additional 500 hp worth, from three, rotating, cylindrical sails. The rotating sales produced thrust via the same, Magnus force that makes a curve ball curve. Barbara went at 9 knots without the wind, or about 12.5 knots when the wind blew. Einstein thought it one of the most brilliant ideas he’d seen.

Force diagram of Flettner rotor (Lele & Rao, 2017)

The source of the force can be understood with help of the figure at left and the graph below. When a simple cylinder sits in the wind, with no spin, α=0, the wind force is essentially drag, and is 1/2 the wind speed squared, times the cross-sectional area of the cylinder, Dxh, and the density of air. Add to this a drag coefficient, CD, that is about 1 for a non-spinning cylinder. More explicitly, FD= CDDhρv2/2. As the figure at right shows, there is a sort-of lift in the form of sustained vibrations at zero spin, α=0. Vibrations like this are useless for propulsion, and can be damaging to the sail. In baseball, such vibrations are the reason knuckle balls fly erratically. If you spin the cylindrical mast at α=2.1, that is at a speed where the fast surface moves with the wind, at 2.1 times the wind speed, and the other side side moves to the wind, there is more force on the side moving to the wind (see figure above) and the ship can be propelled forward (or backward if you reverse the spin direction). Significantly, at α=2.1, you get 6 times as much force as the expected drag, and you no longer get vibrations. FL= CLDhρv2/2, and CL=6 at this rotation speed

Numerical lift coefficients versus time, seconds for different ratios of surface speed to wind speed, a. (Mittal & Kumar 2003), Journal of Fluid Mechanics.

At this rotation speed, α=2.1, this force will be enough to drive a ship so long as the wind is reasonably strong, 15-30 knots, and ship does not move faster than the wind. The driving force is always at right angles to the perceived wind, called the “fair wind”, and the fair wind moves towards the front as the ship speed increases. If you spin the cylinder at 3 to 4 times the wind speed, the lift coefficient increases to between 10 and 18. This drives a ship with yet force. You need somewhat more power to turn the sails, but you are also further from vibrations. Flettner considered α=3.5. optimal. Higher rotation speeds are possible, but they require more rotation power (rotation power goes as ω2, and if you go beyond α=4.3, the vibrations return. Controlling the speed is somewhat difficult but important. Flettner sails were no longer used by the 1930s when fuel became cheaper.

In the early 1980s, the famous underwater explorer, Jacques Cousteau revived the Flettner sail for his exploratory ship, the Alcyone. He used light-weight aluminum sails, and an electric motor for rotation instead of Diesel as on the Barbara. He claimed that the ship drew more than half of its power from the wind, and claimed that, because of computer control, it could sail with no crew. This latter claim was likely bragging. Even with today’s computer systems, people are needed as soon as something goes wrong. Still the energy savings were impressive enough that other ship owners took notice. In recent years, several ship-owners have put Flettner sails on cargo ships, as a right. This is not an ideal use since cargo ships tend to go fast. Still, it’s reported that, these ships get about 20% of their propulsion from wind power, not an insignificant amount.

And this gets us to the reason your curve ball does not curve: you’re not spinning it fast enough. You want the ball to spin at a higher rate than you get just by rolling the ball off your fingers. If you do this, α = 1 and you get relatively little sideways force. To get the ball to really curve, you have to snap your wrist hard aiming for α=1.5 or so. As another approach you can aim for a knuckle ball, achieved with zero rotation. At α=0, the ball will oscillate and your pitch nearly impossible to hit, or catch. Good luck.

Robert Buxbaum, March 22, 2023. There are also various Flettner airplane designs where horizontal, cylindrical “wings” rotate to provide lift, power too in some versions. The aim is high lift with short wings and a relatively low power draw. So-far, these planes are less efficient and slower than a normal helicopter.

Plans to Raise-the-Dead-Sea

The Dead Sea in Israel is a popular tourist attraction and health resort-area. It is also the lowest point on the planet, with a surface about 430m below sea level. Its water is saturated with an alkaline salt, and quite devoid of life, and it’s shrinking fast, loosing about 1 m in height every year. The Jordan river water that feeds the sea is increasingly drawn off for agriculture, and is now about 10% of what it was in the 1800s. The Dead Sea is disappearing fast, a story that is repeated with other inland seas: the Aral Sea, the Great Salt Lake, etc. In theory, one could reverse the loss using sea water. In theory, you could generate power dong this too: 430m is seven times the drop-height of Niagara Falls. The problem is the route and the price.

Five (or six) semi-attractive routes have been mapped out to bring water to the Dead Sea, as shown on the map at right. The shortest, and least expensive is route “A”. Here, water from the Mediterranean enters a 12 km channel near Haifa; it is pumped up 50m and travels in a pipe for about 52 km over the Galilean foothills, exiting to a power station as shown on the elevation map below. In the original plan the sea water feeds into the Jordan river, a drop of about 300m. The project had been estimated to cost $3 B. Unfortunately, it would make much of the Jordan river salty. It was thus deemed unacceptable. A variation of this would run the seawater along the Jordan in a pipe or an open channel. This would add to the cost, and would likely diminish the power that could be extracted, but you would not contaminate the Jordan.

A more expensive route, “B”, is shorter but it requires extensive tunneling under Jerusalem. Assuming 20 mies of tunnel at $500 MM/mile, this would cost $10B. It also requires the sea water to flow through the Palestinian West Bank on its way to the sea. This is politically sensitive and is unlikely to be acceptable to the West Bank Palestinians.

Vertical demand of the northern route

Two other routes, labeled “C” and “D” are likely even more expensive than route B. They require the water to be pumped over the Judaean hills near Bethlehem, south of Jerusalem. That’s perhaps 600m up. The seawater would flow from Ashkalon or Gaza and would enter the Dead Sea at Sodom, near Masada. Version C is the most politically acceptable, since it’s short and does not go through Palestinian land. Also, water enters the dead sea at its saltiest point so there is no disruption of the environment. Route D is similar to C, somewhat cheaper, but a lot more political. It goes through Gaza.

The longest route, “E” would go through Jordan taking water from the Red Sea. Its price tag is said to be $10 B. It’s a relatively flat route, but still arduous, rising 210m. As a result it’s not clear that any power would be generated. A version of this route could send the water entirely through Israel. It’s not clear that this would be better than Route C. Looking things over, it was decided that only routes that made sense are those that avoided Palestinian land. An agreement was struck with Jordan to go ahead with route D, with construction to begin in 2021. The project has been on hold though because of cost, COVID, and governmental inertia.

In order to make a $5-10B project worthwhile, you’ll have to generate $500MM to $1B/year. Some of this will come from tourism, but the rest must come from electrical power generation. As an estimate of power generation, let’s assume that that the flow is 65 m3/s, just enough to balance the evaporation rate. Assuming a 400 m power drop and an 80% efficient turbine, we should generate 80% of 255 MWe = about 204 MWe on average. Assuming a value of electricity of 10¢/kWh, that translates to $20,000/ hour, or $179 million per year. This is something, but not enough to justify the cost. We might increase the value of the power by including an inland pond for water storage. This would allow power production to be regulated to times of peak load, or it could be used for recreation, fish-farming, or cooling a thermal power station up to 1000 MWe. These options almost make sense, but with the tunnel prices quoted, the project is still too expensive to make sense. It is “on hold” for now.

It’s not like the sea will disappear if nothing is done. With 10% of the original in-flow of water to the Dead Sea, it will shrink to 10% its original size, and then stop shrinking. At that point evaporation will match in-flow. One could add more fresh water by increasing the flow from the sea of Galilee, but that water is needed. When more water is available, more is taken out for farming. This is what’s happened to the Arial Sea — it’s now about 10% the original size, and quite salty.

Elon Musk besides the prototype 12 foot diameter tunnel.

There’s a now a new tunnel option though and perhaps these routes deserve a second look: Elon Musk claims his “Boring company” can bore long tunnels of 12 foot diameter, for $10-20 MM/mile. This should be an OK size for this project. Assuming he’s right about the price, or close to right, the Dead Sea could be raised for $1B or so. At that price-point, it makes financial sense. It would even make sense if one built multiple seapools, perhaps one for swimming and one for energy storage, to be located before the energy-generating drop, and another for fish after. There might even be a pool that would serve as coolant for a thermal power plant. Water in the desert is welcome, even if it’s salt water.

Robert Buxbaum, February 14, 2023.

Hydrogen transport in metallic membranes

The main products of my company, REB Research, involve metallic membranes, often palladium-based, that provide 100% selective hydrogen filtering or long term hydrogen storage. One way to understand why these metallic membrane provide 100% selectivity has to do with the fact that metallic atoms are much bigger than hydrogen ions, with absolutely regular, small spaces between them that fit hydrogen and nothing else.

Palladium atoms are essentially spheres. In the metallic form, the atoms pack in an FCC structure (face-centered cubic) with a radius of, 1.375 Å. There is a cloud of free electrons that provide conductivity and heat transfer, but as far as the structure of the metal, there is only a tiny space of 0.426 Å between the atoms, see below. This hole is too small of any molecule, or any inert gas. In the gas phase hydrogen molecules are about 1.06 Å in diameter, and other molecules are bigger. Hydrogen atoms shrink when inside a metal, though, to 0.3 to 0.4 Å, just small enough to fit through the holes.

The reason that hydrogen shrinks has to do with its electron leaving to join palladium’s condition cloud. Hydrogen is usually put on the upper left of the periodic table because, in most cases, it behaves as a metal. Like a metal, it reacts with oxygen, and chlorine, forming stoichiometric compounds like H2O and HCl. It also behaves like a metal in that it alloys, non-stoichiometrically, with other metals. Not with all metals, but with many, Pd and the transition metals in particular. Metal atoms are a lot bigger than hydrogen so there is little metallic expansion on alloying. The hydrogen fits in the tiny spaces between atoms. I’ve previously written about hydrogen transport through transition metals (we provide membranes for this too).

No other atom or molecule fits in the tiny space between palladium atoms. Other atoms and molecules are bigger, 1.5Å or more in size. This is far too big to fit in a hole 0.426Å in diameter. The result is that palladium is basically 100% selective to hydrogen. Other metals are too, but palladium is particularly good in that it does not readily oxidize. We sometime sell transition metal membranes and sorbers, but typically coat the underlying metal with palladium.

We don’t typically sell products of pure palladium, by the way. Instead most of our products use, Pd-25%Ag or Pd-Cu. These alloys are slightly cheaper than pure Pd and more stable. Pd-25% silver is also slightly more permeable to hydrogen than pure Pd is — a win-win-win for the alloy.

Robert Buxbaum, January 22, 2023

Fusion advance: LLNL’s small H-bomb, 1.5 lb TNT didn’t destroy the lab.

There was a major advance in nuclear fusion this month at the The National Ignition Facility of Lawrence Livermore National Laboratory (LLNL), but the press could not figure out what it was, quite. They claimed ignition, and it was not. They claimed that it opened the door to limitless power. It did not. Some heat-energy was produced, but not much, 2.5 MJ was reported. Translated to the English system, that’s 600 kCal, about as much heat in a “Big Mac”. That’s far less energy went into lasers that set the reaction off. The importance wasn’t the amount in the energy produced, in my opinion, it’s that the folks at LLNL fired off a small hydrogen bomb, in house, and survived the explosion. 600 kCal is about the explosive power of 1.5 lb of TNT.

Many laser beams converge on a droplet of deuterium-tritium setting off the explosion of a small fraction of the fuel. The explosion had about the power of 1.2 kg of TNT. Drawing from IEEE Spectrum

The process, as reported in the Financial Times, involved “a BB-sized” droplet of holmium -enclosed deuterium and tritium. The folks at LLNL fast-cooked this droplet using 100 lasers, see figure of 2.1MJ total output, converging on one spot simultaneously. As I understand it 4.6 MJ came out, 2.5 MJ more than went in. The impressive part is that the delicate lasers survived the event. By comparison, the blast that bought down Pan Am flight 103 over Lockerbie took only 2-3 ounces of explosive, about 70g. The folks at LLNL say they can do this once per day, something I find impressive.

The New York Times seemed to think this was ignition. It was not. Given the size of a BB, and the density of liquid deuterium-tritium, it would seem the weight of the drop was about 0.022g. This is not much but if it were all fused, it would release 12 GJ, the equivalent of about 3 tons of TNT. That the energy released was only 2.5MJ, suggests that only 0.02% of the droplet was fused. It is possible, though unlikely, that the folks at LLNL could have ignited the entire droplet. If they did, the damage from 5 tons of TNT equivalent would have certainly wrecked the facility. And that’s part of the problem; to make practical energy, you need to ignite the whole droplet and do it every second or so. That’s to say, you have to burn the equivalent of 5000 Big Macs per second.

You also need the droplets to be a lot cheaper than they are. Today, these holmium capsules cost about $100,000 each. We will need to make them, one per second for a cost around $! for this to make any sort of sense. Not to say that the experiments are useless. This is a great way to test H-bomb designs without destroying the environment. But it’s not a practical energy production method. Even ignoring the energy input to the laser, it is impossible to deal with energy when it comes in the form of huge explosions. In a sense we got unlimited power. Unfortunately it’s in the form of H-Bombs.

Robert Buxbaum, January 5, 2023

Comparing Artemis SLS to Saturn V and Falcon heavy

This week, the Artemis I, Orion capsule splashed down to general applause after circling the moon with mannequins. The launch cost $4.1 Billion, and the project, $50 Billion so far, of $93 Billion expected. Artemis II will carry people around the moon, and Artemis III is expected to land the first woman and person of color. The goal isn’t one I find inspiring, and I feel even less inspired by the technology. I see few advances in Artemis compared to the Saturn V of 50 years ago. And in several ways, it looks like a step backwards.

The graphic below compares the Artemis I SLS (Space Launch System) to the Saturn V. The SLS is 10% lighter, but the payload is lighter, too. It can carry 27 tons to the moon, while the Saturn V sent 50 tons to the moon. I’d expect more weight by now. We have carbon fiber and aramids, and they did not. Add to this that the cost per flight is higher, $4.1 B, versus $1.49 B in 2022 dollars for a Saturn V ($185 million in 1969 dollars). What’s more there was no new engine development or production, so the flight numbers are limited: Each SLS launch throws away five, space shuttle engines. When they are all gone, the project ends. We have no plans or ability to make more engines.

Comparison of Apollo Saturn V and Artemis SLS. The SLS has less lift weight and costs more per launch.

As it happens, there was a better alternative available, the Falcon heavy from SpaceX. The Falcon heavy has been flying for 5 years now, and costs only $141 million per launch, about 1/30 as much as an Artemus launch. The rocket is largely reusable, with 3D printed engines, and boosters that land on their tails. Each SLS is expensive because it’s essentially a new airplane built specially for each flight. Every part but the capsule is thrown away. Adding to the cost of SLS launches is the fuel; hydrogen, the same fuel as the space shuttle. Per energy it’s very expensive. The energy cost for the SLS boosters is high too, and the efficiency is low; each SLS booster costs $290M, more than the cost of two Falcon heavy launches. Falcon launches are cheap, in part because the engines burn kerosine, as did the Saturn V at low altitude. Beyond cost hydrogen has low thrust per flow (low momentum), and is hard to handle; hydrogen leaks caused two Artemis scrubs, and numerous Shuttle delays. I discussed the physics of rocket engines in a post seven years ago.

This graph of $/kg to low earth orbit is mostly from futureblind.com. I added the data for Artemis SLS. Saturn V and Falcon use cheaper fuel and a leaner management team.

It might be argued that Artemis SLS is an inspirational advance because it can lift an entire moon project in one shot, but the Saturn V lifted that and more, all of Skylab. Besides, there is no need to lift everything on one launch. Elon Musk has proposed lifting in two stages, sending the moon rocket and moon lander to low earth orbit with one launch, then lifting fuel and the astronauts on a second launch. Given the low cost of a Falcon heavy launch, Musk’s approach is sure to save money. It also helps develop space refueling, an important technology.

Musk’s Falcon may still reach the moon because NASA still needs a moon lander. NASA has awarded the lander contract to three companies for now, Jeff Bezos’s Blue Origin, Dynetics-Aerodyne makers of the Saturn V, and Musk’s SpaceX. If the SpaceX version wins, a modified Falcon will be sent to the moon on a Falcon heavy along with a space station. Artemis III will rendezvous with them, astronauts will descend to the moon on the lander, and will use the lander to ascend. They’ll then transfer to an Orion capsule for the return journey. NASA has also contracted with Bezos’s Blue origin for planetary, Earth observation, and exploration plans. I suspect that Musk’s lander will win, if only because of reliability. There have been 59 Falcon launches this year, all of them with safe landings. By contrast, no Blue Origin or Dynetics rocket has landed, and Blue Origin does not expect to achieve orbital velocity till 2025.

As best I can tell, the reason we’re using the Artemis SLS with its old engines is inspiration. The Artemis program director, Charlie Blackwell-Thompson is female, and an expert in space shuttle engines. Previous directors were male. Previous astronauts too were mostly male. Musk is not only male, but his products suffer from him being considered a horrible person, a toxic male, in the Tony Stark (Iron Man) mold. Even Jeff Bezos and Richard Branson are considered better, though their technology is worse. See my comparison of SpaceX, Virgin Blue, and Blue Origin.

To me, the biggest blocks to NASA’s inspirational aims, in my opinion, are the program directors who gave us the moon landing. These were two Nazi SS commanders (SS Sturmbannführers), Arthur Rudolph and Wernher Von Braun. Not only were they male and white, they were barely Americanized Nazis, elevated to their role at NASA after killing off virtually all of their 20,000, mostly Jewish, slave workers making rockets for Hitler. Here’s a song about Von Braun, by Tom Lehrer. Among those killed was Von Braun’s professor. In his autobiography, Von Braun showed no sign of regret for any of this, nor does he take blame. The slave labor camp they ran, Dora-Mittelbau, had the highest death rate of all slave labor camps, and when some workers suggested that they could work better if they were fed, the directors, Rudolph and Von Braun had 80 machine gunned to death. Still, Von Braun got us to the moon, and his inspirational comments line the walls at NASA, Kennedy. Blackwell-Thompson and Bezos are surely more inspirational, but their designs seem like dead ends. We may still have to use Musk’s SpaceX if we want a lander or a moon program after the space shuttle’s engines are used up. As Von Braun liked to point out, “Sacrifices have to be made.”

Robert Buxbaum, December 21, 2022. Here’s a bit more about Rudolph, von Braun, the Peenemünda rocket facility, and the Dora-Mittelbau slave labor camp. I may post photos of Von Braun with Hitler and Himmler in SS regalia, but feel uncomfortable doing so at the moment. I feel similarly about posting links to Von Braun’s inspirational interviews.

A simpler way to recycle the waste fuel of a SOFC.

My favorite fuel cells burn hydrogen-rich hydrocarbon fuels, like methane (natural gas) instead of pure hydrogen. Methane is far more energy dense, and costs far less than hydrogen per energy content. The US has plenty of methane and has pipelines that distribute it to every city and town. It’s a low CO2 fuel, and we can lower the CO2 impact further by mixing in hydrogen to get hythane. Elon Musk has called hydrogen- powered fuel cells “fool cells”, methane-powered fuel cells look a lot less foolish. They easily compete with his batteries and with gasoline. Besides, Musk has chosen methane as the fuel for his proposed starship to Mars.

Solid oxide fuel cells, SOFCs, can use methane directly without any pre-reformer. They operate at 800°C or so. At these temperatures, methane reacts with water (steam) within the fuel cell to form hydrogen by the reaction, CH4 + H2O –> 3H2 + CO. The hydrogen, and to a lesser extent the CO is oxidized in the fuel cell to create electricity,, but the methane is not 100% consumed, generally. Unused methane, CO, and some hydrogen exits a solid oxide fuel cell along with the products of combustion, CO2 and water.

Several researchers have looked for ways to recycle this waste fuel to capture the energy value. Six years ago, I patented a membrane method to extract the waste fuel and recycle it, see a description here. I now see this method as too complex, and have applied for a patent on a simpler version, shown below as Figure 1. As before the main work is done by a membrane but here I dispense with the water gas shift reactor, and many of the heat exchangers of the previous approach.

Simple way to improve fuel use in a high temperature fuel cell, using just a membrane.

The fuel cell system of Fig. 1 operates at somewhat elevated pressure, 2 atm or more. It is expected that the majority of the exhaust going to the membrane will be CO2 and water. Most of this will pass through the membrane and will exhaust to the air. The rest is mixed with fresh methane and recycles to the fuel cell. Despite the pressure of the fuel cell, very a little energy is needed for recirculation since the methane does not go through the membrane. The result is a light, simple, and energy efficient process. If you are interested, please contact me at REB Research. Or you can purchase the silicone membrane module here. Alternately, see here for flux information and other applications.

Robert Buxbaum, December 8, 2022.

My hero, Peter Cooper of New York, 1791-1883.

Peter Cooper

It’s good to have hero, someone whose approach to life, family and business you admire that you might reasonably be able to follow. As an engineer, inventor, I came to regard Peter Cooper of New York as a hero. He made his own business and was a success, in business and with his family without being crooked. This is something that is not as common as you might think. When I was in 4th grade, we got weekly assignments to read a biography and write about it. I tended to read about scientists and inventors then and after. I quickly discovered that successful inventors tended to die broke, estranged from their family and friends. Edison, Tesla, Salk, Goodyear, and Ford are examples. Tesla didn’t marry. Henry Ford’s children were messed up. Salk had a miserable marriage. Almost everyone working on the Atom Bomb had issues with the government. Most didn’t benefit financially. They died hated by the press as mass-murderers, and pursued by the FBI as potential spies. It was a sad pattern for someone who hoped to be an inventor -engineer.

The one major exception I found was Peter Cooper, an inventor, industrialist, and New York politician who was honest, and who died wealthy and liked with a good family. One result of reading about him was to conclude that some engineering areas are better than others; generally making weapons is not a path to personal success.

Tom Thumb, the blower at right is the secret to its light weight per power.

Peter Cooper was different, both in operation and outcome. Though he made some weapons (gun barrels) and inverted a remote control torpedo, these were not weapons of mass killing. Besides he but thee for “the good side” of the Civil War. And, when Cooper made an invention or a product, he made sure to have the capital available to make a profit on it too. He worked hard to make sure his products were monopolies, using a combination of patents and publicity to secure their position.

Brand management helps.

Cooper was a strong family man who made sure to own his own business, and made sure to control the sources of key materials too. He liked to invest in other businesses, but only as the controlling share-holder, or as a bond holder, believing that minor share-holders tend to be cheated. He was pro monopoly, pro trusts, and a big proponet of detailed contracts, so everyone knew where they stood. A famous invention of Cooper’s was Jello, a flavored, light version of his hide-glue, see the patent here. Besides patenting it, he sold the product with his brand, thus helping to maintain the monopoly.

Cooper was generous with donations to the poor, but not to everyone, and not with loans. And he would not sign anyone’s note as a guarantor. Borrowers tended to renege, he found, and they resent you besides. You lose your money, and lost them as a friend. He founded two free colleges, Cooper Union, and the Cooper-Limestone Institute, plus an inventor’s institute. (I got my education, free from Cooper Union.) Cooper ran these institutions in his lifetime, not waiting till he was dead to part with his money. Many do this in the vain hope that others will run the institution as they would.

Peter Cooper always sought a monopoly, or a near monopoly, patenting his own inventions, or buying the rights to others’ patents to help make it so. He believed that monopolies were good, saying they were the only sort of business that made money while allowing him to treat his workers well. If an invention would not result in a monopoly, Peter Cooper gave the rights away.

The list of inventions he didn’t patent include the instruments to test the quality of glue and steel (quality control is important), and a tide-powered ferry in New York. Perhaps his most famous unpainted invention was a lightweight, high power steam locomotive, “The Tom Thumb”, made in 1840. Innovations included beveled wheels to center the carriage on its rails, and a blower on the boiler fire, see photo above. The blower meant he could generate high-power in a small space at light weight. These are significant innovations, but Cooper did not foresee having a monopoly, so he didn’t pursue these ideas. Instead, he focussed on making rails and wire rope; he patented the process to roll steel, and the process for making coke from coal. Also on his glue/jello business. Since he made these items from dead cows and horses, he found he could also sell “foot oil” and steam-pounded leather, “Chamois”. He also pursued a telephone/ telegraph business across the Atlantic, more on that below, but only after getting monopoly rights for 50 years.

Cooper managed to stay friends with those he competed with by paying license fees for any patents he used (he tried to negotiate low rates), or buying or selling the patent rights as seemed appropriate. He also licensed his patents, and rented out buildings he didn’t need. He rented at a rate of 7% of the sale price, a metric I’ve used myself, considering rental to be like buying on loan. There is a theory of stock-buying that matches this.

The story the telegraph cable across the Atlantic is instructive to seeing how the pieces fit together. The first significant underwater cable was not laid by Cooper, by a Canadian inventor, Frederick Gisborne. It was laid in 1852 between Prince Edward Island and New Brunswick. Through personal connections, Gisborne’s company got exclusive rights for 30 years, for this and for a cable that would go to Newfoundland, but he didn’t have the money or baking to make it happen. The first cable failed, and Gisborne ran out of money and support. Only his exclusive rights remained. This is the typical story of an inventor/ engineer/businessman who has to rely on other peoples’ money and patience.

A few months after the failure, a friend of Cooper’s, Cyrus Field, convinced Cooper that good money could be made, and public good could be done, if Cooper could lay such a cable all the way to London. One thing that attracted Cooper to the project was that the cable could be made as an insulated iron-copper rope in Cooper’s own factory. Cooper, Field, and some partners (see painting below) bought Gisborne’s company, along with their exclusive rights, and formed a new company, The New York, Newfoundland & London Telegraph Company, see charter here. The founders are imagined* with a globe and a section of cable sitting on their table. Gisborne, though not shown in the painting, was a charter member, and made chief engineer. Cooper was president. He also traveled on the boat with Gisborne to lay the cable across the St. Lawrence – just to be sure he knew what was going on. This cable provided a trial for The Trans Atlantic cable.

The founding individuals to lay a transatlantic cable. Peter Cooper at left is the chairman, Cyrus Field is standing, Samuel Morse is at the back. Frederic Gisborne, a founder, does not appear in the paining. Typical.

Samuel Morse was hired as an electrician; he is pictured in the painting, but was not a charter member. Part of the problem with Morse was that he owned the patent on Morse-telegraphy, and Cooper didn’t want to pay his “exorbitant” fees. So Cooper and Field bought an alternative telegraph patent from David Hughes, a Kentucky school teacher. This telegraph system used tones instead of clicks and printed whole letters at a time. By hiring Morse, but not his patents, Cooper saved money, while retaining Morse’s friendship and expertise. The alternative could have been a nasty spat. Their telegraph company sub-licensed Hughes’s tone-method a group of western telegraph owners, “The Western Union,” who used it for many years, producing the distinctive Western Union Telegrams. With enough money in hand and credibility from the Canadian trial, the group secured 50 years monopoly rights for a telegraph line across the Atlantic. Laying the cable took many years, with semi-failed attempts in 1857, 1858, and 1865. When the eventual success came in 1866, the 50 years’ monopoly rights they’d secured meant that they made money from the start. They could treat workers fairly. Marconi would discover that Cooper wrote a good contract; his wireless telegraph required a widely different route.

I should also note that Peter Cooper was politically active: he started as a Democrat, helped form the Republican Party, bringing Lincoln to speak in NY for the first time, and ended up founding the Greenback-Labor Party, running for president as a Greenback. He was strongly for tariffs, and strongly against inflation. He said that the dollar should have the same value for all time for the same reason that the foot should have the same length and the pound the same weight. I have written in favor of tariffs off and on. They help keep manufacturing in America, and help insure that those who require French wine or German cars pay the majority of US taxes. They are also a non-violent vehicle for foreign policy.

Operating under these principles, through patents and taxed monopolies, Peter Cooper died wealthy, and liked. Liked by his workers, liked by much of the press, and by his family too, with children who turned out well. The children of rich people often turn out poorly. Carnegie’s children fought each other in court, Ford’s were miserable. Cooper’s children continued in business and politics, successfully and honorably, and in science/ engineering (Peter Coper Hewitt invented the power rectifier, sold to Westinghouse). The success of Peter Cooper’s free college, Cooper Union, influenced many of his friends to open similar institutions. Among his friends who did this were Carnegie, Pratt, Stevens, Rensselaer, and Vanderbilt. He stayed friends with them and with other inventors of the day, despite competing in business and politics. Most rich folks can not do this; they tend to develop big egos, and few principles.

Robert Buxbaum, November 30, 2022. I find the painting interesting. Why was it painted? Why is Gisborne not in it and Morse in the painting — sometimes described as vice President? The charter lists Morse as “electrician”, an employee. Chandler White, holding papers next to Cooper, was Vice President. My guess is that the painting was made to help promote the company and sell stock. They made special cigars with this image too. This essay started as a 5th grade project with my son. See a much earlier version here.

My home-made brandy and still.

MY home-made still, and messy lab. Note the masking tape seal and the nylon hoses. Nylon is cheaper than copper. The yellow item behind the burner is the cooling water circulation pump. The wire at top and left is the thermocouple.

I have an apple tree, a peach tree, and some grape vines. They’re not big trees, but they give too much fruit to eat. The squirrels get some, and we give some away. As for the rest, I began making wine and apple jack a few years back, but there’s still more fruit than I can use. Being a chemical engineer, I decided to make brandy this year, so far only with pears and apples.

The first steps were the simplest: I collected fruit in a 5 gallon, Ace bucket, and mashed it using a 2×4. I then added some sugar and water and some yeast and let it sit with a cover for a week or two. Bread yeast worked fine for this, and gives a warm flavor, IMHO. A week or so later, I put the mush into a press I had fro grapes, shown below, and extracted the fermented juice. I used a cheesecloth bag with one squeezing, no bag with the other. The bag helped, making cleanup easier.

The fruit press, used to extract liquid. A cheese cloth bag helps.

I did a second fermentation with both batches of fermented mash. This was done in a pot over a hot-plate on warm. I added more sugar and some more yeast and let it ferment for a few more days at about 78°F. To avoid bad yeasts, I washed out the pot and the ace bucket with dilute iodine before using them– I have lots of dilute iodine around from the COVID years. The product went into the aluminum “corn-cooker” shown above, 5 or 6 gallon size, that serves as the still boiler. The aluminum cover of the pot was drilled with a 1″ hole; I then screwed in a 10″ length of 3/4″ galvanized pipe, added a reducing elbow, and screwed that into a flat-plate heat exchanger, shown below. The heat exchanger serves as the condenser, while the 3/4″ pipe is like the cap on a moonshiner still. Its purpose is to keep the foam and splatter from getting in the condenser.

I put the pot on the propane burner stand shown, sealed the lid with masking tape (it worked better than duct tape), hooked up the heat exchanger to a water flow, and started cooking. If you don’t feel like making a still this way, you can buy one at Home Depot for about $150. Whatever route you go, get a good heat exchanger/ condenser. The one on the Home-depot still looks awful. You need to be able to take heat out as fast as the fire puts heat in, and you’ll need minimal pressure drop or the lid won’t seal. The Home Depot still has too little area and too much back-pressure, IMHO. Also, get a good thermometer and put it in the head-space of the pot. I used a thermocouple. Temperature is the only reasonable way to keep track of the progress and avoid toxic distillate.

A flat-plate heat exchanger, used as a condenser.

The extra weight of the heat exchanger and pipe helps hold the lid down, by the way, but it would not be enough if there was a lot of back pressure in the heat exchanger-condenser. If your lid doesn’t seal, you’ll lose your product. If you have problems, get a better heat exchanger. I made sure that the distillate flows down as it condenses. Up-flow adds back pressure and reduces condenser efficiency. I cooled the condenser with water circulated to a bucket with the cooling water flowing up, counter current to the distillate flow. I could have used tap water via a hose with proper fittings for cooling, but was afraid of major leaks all over the floor.

With the system shown, and the propane on high, it took about 20 minutes to raise the temperature to near boiling. To avoid splatter, I turned down the heater as the temperature approached 150°F. The first distillate came out at 165°F, a temperature that indicated it was not alcohol or anything you’d want to drink. I threw away the first 2-3 oz of this product. You can sniff or sip a tiny amount to convince yourself that this this is really nasty, acetone, I suspect, plus ethyl acetate, and maybe some ether and methanol. Throw it away!

After the first 2-3 ounces, I collected everything to 211°F. Product started coming in earnest at about 172°F. I ended distillation at 211°F when I’d collected nearly 3 quarts. For my first run, my electronic thermometer was off and I stopped too early — you need a good thermometer. The material I collected and was OK in taste, especially when diluted a bit. To test the strength, I set some on fire, the classic “100% proof test”, and diluted till it to about 70% beyond. This is 70% proof, by the classic method. I also tried a refractometer, comparing the results to whiskey. I was aiming for 60-80 proof (30-40%).

My 1 gallon aging barrel.

I tried distilling a second time to improve the flavor. The result was stronger, but much worse tasting with a loss of fruit flavor. By contrast, a much better resulted from putting some distillate (one pass) in an oak barrel we had used for wine. Just one day in the barrel helped a lot. I’ve also seen success putting charred wood cubes set into a glass bottle of distillate. Note: my barrel, as purchased, had leaks. I sealed them with wood glue before use.

I only looked up distilling law after my runs. It varies state to state. In Michigan, making spirits for consumption, either 1 gal or 60,000 gal/year, requires a “Distilling, Rectifying, Blending and/or Bottling Spirits” Permit, from the ATF Tax and Trade Bureau (“TTB”) plus a Small Distiller license from Michigan. Based on the sale of stills at Home Depot and a call to the ATF, it appears there is little interest in pursuing home distillers who do not sell, despite the activity being illegal. This appears similar to state of affairs with personal use marijuana growers in the state. Your state’s laws may be different, and your revenuers may be more enthusiastic. If you decide to distill, here’s some music, the Dukes of Hazard theme song.

Robert Buxbaum, November 23, 2022.