Tag Archives: self driving

Most traffic deaths are from driving too slow

About 40,100 Americans lose their lives to traffic accidents every year. About 10,000 of these losses involve alcohol, and about the same number involve pedestrians, but far more people have their lives sucked away by waiting in traffic, IMHO. Hours are spent staring at a light, hoping it will change, or slowly plodding between destinations with their minds near blank. This slow loss of life is as real as the accidental type, but less dramatic.

Consider that Americans drive about 3.2 trillion miles each year. I’ll assume an average speed of 30 mph (the average speed registered on my car is 29 mph). Considering only the drivers of these vehicles, I calculate 133 billion man-hours of driving per year; that’s 15.2 million man-years or 217,000 man-lifetimes. If people were to drive a little faster, perhaps 10% faster, some 22,000 man lifetimes would be saved per year in time wasted. The simple change of raising the maximum highway speed to 80 mph from 70, I’d expect, would save half this, maybe 10,000 lifetimes. There would likely be some more accidental deaths, but not more accidents. Tiredness is a big part of highway accidents, as is highway congestion. Faster speeds decreases both, decreasing the number of accidents, but one expects there will be an increase in the deadliness of the accidents.

Highway deaths for the years before and after Nov. 1995. Most states raised speeds, but some left them unchanged.

Highway deaths for the years before and after speed limit were relaxed in Nov. 1995. At that time most states raised their speed limits, but some did not, leaving them at 65 rural, 55 urban; a few states were not included in this study because they made minor changes.

A counter to this expectation comes from the German Autobahn, the fastest highway in the world with sections that have no speed limit. German safety records show that there are far fewer accidents per km on the Autobahn, and that the fatality rate per km is about 1/3 that on other stretches of highway. This is about 1/2 the rate on US highways (see safety comparison). For a more conservative comparison, we could turn to the US experience of 1995. Before November 1995, the US federal government limited urban highway speeds to 55 mph, with 65 mph allowed only on rural stretches. When these limits were removed, several states left the speed limits in place, but many others raised their urban speed limits to 65 mph, and raised rural limits to 70 mph. Some western states went further and raised rural speed limits to 75 mph. The effect of these changes is seen on the graph above, copied from the Traffic Operations safety laboratory report. Depending on how you analyze the data, there was either a 2% jump (institute of highway safety) in highway deaths or perhaps a 5% jump. These numbers translate to a 3 or 6% jump because the states that did not raise speeds saw a 1% drop in death rates. Based on a 6% increase, I’d expect higher highway speed limits would cost some 2400 additional lives. To me, even this seems worthwhile when balanced against 10,000 lives lost to the life-sucking destruction of slow driving.

Texas has begun raising speed limits. Texans seem happy.

Texas has begun raising speed limits. So far, Texans seem happy.

There are several new technologies that could reduce automotive deaths at high speeds. One thought is to only allow high-speed driving for people who pass a high-speed test, or only for certified cars with passengers who are wearing a 5-point harness, or only on roads. More relevant to my opinion is only on roads with adequate walk-paths — many deaths involve pedestrians. Yet another thought; auto-driving cars (with hydrogen power?). Computer-aided drivers can have split second reaction times, and can be fitted with infra-red “eyes” that see through fog, or sense the motion of a warm object (pedestrian) behind an obstruction. The ability of computer systems to use this data is limited currently, but it is sure to improve.

I thought some math might be in order. The automotive current that is carried by a highway, cars/hour, can be shown to equal to the speed of the average vehicle multiplied by the number of lanes divided by the average distance between vehicles. C = v L/ d.

At low congestion, the average driving speed, v remains constant as cars enter and leave the highway. Adding cars only affects the average distance between cars, d. At some point, around rush hour, so many vehicles enter the highway that d shrinks to a distance where drivers become uncomfortable; that’s about d = 3 car lengths, I’d guess. People begin to slow down, and pretty soon you get a traffic jam — a slow-moving parking lot where you get less flow with more vehicles. This jam will last for the entirety of rush hour. One of the nice things about auto-drive cars is that they don’t get nervous, even at 2 car lengths or less at 70 mph. The computer is confident that it will brake as soon as the car in front of it brakes, maintaining a safe speed and distance where people will not. This is a big safety advantage for all vehicles on the road.

I should mention that automobile death rates vary widely between different states (see here), and even more widely between different countries. Here is some data. If you think some country’s drivers are crazy, you should know that many of the countries with bad reputations (Italy, Ireland… ) have highway death rates that are lower than ours. In other countries, in Africa and the mid-east death rates per car or mile driven are 10x, 100x, or 1000x higher than in the US. The countries have few cars and lots of people who walk down the road drunk or stoned. Related to this, I’ve noticed that old people are not bad drivers, but they drive on narrow country roads where people walk and accidents are common.

Robert Buxbaum, June 6, 2018.

Hydrogen powered trucks and busses

With all the attention on electric cars, I figure that we’re either at the dawn of electric propulsion or of electric propulsion hype. Elon Musk’s Tesla motor car company stock is now valued at $59 B, more than GM or Ford despite the company having massive losses and few cars. It’s a valuation that, I suspect, hangs on the future of autonomous vehicles, a future whose form is uncertain. In this space, I suspect that hydrogen-battery hybrids make more sense than batteries alone, and that the first large-impact uses will be trucks and busses — vehicles that go long distance on highways.

Factory floor, hydrogen fueling station for plug-power forklifts. Plug FCs reached their 10 millionth refueling this January.

Factory floor, hydrogen fueling station for fuel cell forklifts. This company’s fuel cells have had over 10 million refuelings so far.

Currently there are only two brands of autonomous vehicle available for sale in the US: the Cadillac CT6, a gasoline hybrid, and the Tesla, a pure battery vehicle. Neither work well except on highways because there are fewer on-highway driver-issues. Currently, the CT6 allows you to take your hands off the wheel — see review here. This, to me, is a big deal: it’s the only real point of autonomous control, and if one can only do this on the highway, that’s still great. Highway driving gets tiring after the first hundred miles or so, and any relief is welcome. With Tesla cars, you can never take your hand off the wheel or the car stops.

That battery cars compete, cost wise, I suspect, is only possible because the US government highly subsidizes the battery cost. Musk hides the true cost of the battery, I suspect, among the corporate losses. Without this subsidy, hydrogen – hybrid vehicles, I suspect, would be far cheaper than Tesla while providing better range, see my calculation here. Adding to the advantage of hybrids over our batteries, the charge time is much faster. This is very important for highway vehicles traveling any significant distance. While hydrogen fuel isn’t as cheap as gasoline, it’s becoming cheaper — now about double the price of gasoline on a per mile basis, and it’s far cheaper than batteries when the wear-and tear life of the batter is included. And unlike gasoline, hydrogen propulsion is pollution-free  and electric.

Electric propulsion seems better suited to driverless vehicles than gasoline propulsion because of how easy it is to control electricity. Gasoline vehicles can have odd acceleration issues, e.g. when the gasoline gets wet. And it’s not like there are no hydrogen fueling stations. Hydrogen, fuel-cell power has become a major competitor for fork-lifts, and has recently had its ten millionth refueling in that application. The same fueling stations that serve fork-lift users could serve the self-driving truck and bus market. For round the town use, hydrogen vehicles could use battery power along (plug-in hybrid mode). A vehicle of this sort could have very impressive performance. A Dutch company has begun to sell kits to convert Tesla model S autos to a plug-in hydrogen hybrid. The result boasts a 620 mile (1000 km) range instead of the normal 240 miles; see here. On the horizon, Hyundai has debuted the self-driving “Nexo” with a range of 370 miles. Self-driving Nexos were used to carry spectators between venues at the Pyongyang olympics. The Toyota Mirai (312 miles) and the Honda Clarity Fuel Cell (366 miles) can be expected to début with similar capabilities in the near future.

Cadillac CT6 with supercruise. An antonymous vehicle that you can buy today that allows you to take your hand off the wheel.

Cadillac CT6 with supercruise. An autonomous vehicle that you can buy today that allows you to take your hand off the wheel.

In the near-term, trucks and busses seem more suited to hydrogen than general-use cars because of the localization of hydrogen refueling, Southern California has some 36 public hydrogen refueling stations at last count, but that’s too few for most personal car users. Other states have even fewer spots; Michigan has only two where one can drive up and get hydrogen. A commercial trucking company can work around this if they go between fixed depots that may already have hydrogen dispensers, or can be fitted with dispensers. Ideally they use the same dispensers as the forklifts. If one needs extra range one can carry a “hydrogen Jerry can” or two — each jerry can providing an extra 20-30 miles of emergency range. I do not see electric vehicles working as well for trucks and busses because the charge times are too slow, the range is too modest, and the electric power need is too large. To charge a 100 kWhr battery in an hour requires an electric feed of over 100 kW, about as much as a typical mall. With a, more-typical 24kW (240 V at 100 Amps) service the fastest you can recharge would be 4 1/2 hours.

So why not stick to gasoline, as with the Cadillac? My first, simple answer is electric control simplicity. A secondary answer is the ability to use renewable power from wind, solar, and nuclear; there seems to be a push for renewable and electric or hydrogen vehicles make use of this power. Of these two, only hydrogen provides the long-range, fast fueling necessary to make self-driving trucks and busses worthwhile.

Robert Buxbaum March 12, 2018. My company, REB Research provides hydrogen purifiers and hydrogen generators.