Tag Archives: engineer

My hero, Peter Cooper of New York, 1791-1883.

Peter Cooper

It’s good to have hero, someone whose approach to life, family and business you admire that you might reasonably be able to follow. As an engineer, inventor, I came to regard Peter Cooper of New York as a hero. He made his own business and was a success, in business and with his family without being crooked. This is something that is not as common as you might think. When I was in 4th grade, we got weekly assignments to read a biography and write about it. I tended to read about scientists and inventors then and after. I quickly discovered that successful inventors tended to die broke, estranged from their family and friends. Edison, Tesla, Salk, Goodyear, and Ford are examples. Tesla didn’t marry. Henry Ford’s children were messed up. Salk had a miserable marriage. Almost everyone working on the Atom Bomb had issues with the government. Most didn’t benefit financially. They died hated by the press as mass-murderers, and pursued by the FBI as potential spies. It was a sad pattern for someone who hoped to be an inventor -engineer.

The one major exception I found was Peter Cooper, an inventor, industrialist, and New York politician who was honest, and who died wealthy and liked with a good family. One result of reading about him was to conclude that some engineering areas are better than others; generally making weapons is not a path to personal success.

Tom Thumb, the blower at right is the secret to its light weight per power.

Peter Cooper was different, both in operation and outcome. Though he made some weapons (gun barrels) and inverted a remote control torpedo, these were not weapons of mass killing. Besides he but thee for “the good side” of the Civil War. And, when Cooper made an invention or a product, he made sure to have the capital available to make a profit on it too. He worked hard to make sure his products were monopolies, using a combination of patents and publicity to secure their position.

Brand management helps.

Cooper was a strong family man who made sure to own his own business, and made sure to control the sources of key materials too. He liked to invest in other businesses, but only as the controlling share-holder, or as a bond holder, believing that minor share-holders tend to be cheated. He was pro monopoly, pro trusts, and a big proponet of detailed contracts, so everyone knew where they stood. A famous invention of Cooper’s was Jello, a flavored, light version of his hide-glue, see the patent here. Besides patenting it, he sold the product with his brand, thus helping to maintain the monopoly.

Cooper was generous with donations to the poor, but not to everyone, and not with loans. And he would not sign anyone’s note as a guarantor. Borrowers tended to renege, he found, and they resent you besides. You lose your money, and lost them as a friend. He founded two free colleges, Cooper Union, and the Cooper-Limestone Institute, plus an inventor’s institute. (I got my education, free from Cooper Union.) Cooper ran these institutions in his lifetime, not waiting till he was dead to part with his money. Many do this in the vain hope that others will run the institution as they would.

Peter Cooper always sought a monopoly, or a near monopoly, patenting his own inventions, or buying the rights to others’ patents to help make it so. He believed that monopolies were good, saying they were the only sort of business that made money while allowing him to treat his workers well. If an invention would not result in a monopoly, Peter Cooper gave the rights away.

The list of inventions he didn’t patent include the instruments to test the quality of glue and steel (quality control is important), and a tide-powered ferry in New York. Perhaps his most famous unpainted invention was a lightweight, high power steam locomotive, “The Tom Thumb”, made in 1840. Innovations included beveled wheels to center the carriage on its rails, and a blower on the boiler fire, see photo above. The blower meant he could generate high-power in a small space at light weight. These are significant innovations, but Cooper did not foresee having a monopoly, so he didn’t pursue these ideas. Instead, he focussed on making rails and wire rope; he patented the process to roll steel, and the process for making coke from coal. Also on his glue/jello business. Since he made these items from dead cows and horses, he found he could also sell “foot oil” and steam-pounded leather, “Chamois”. He also pursued a telephone/ telegraph business across the Atlantic, more on that below, but only after getting monopoly rights for 50 years.

Cooper managed to stay friends with those he competed with by paying license fees for any patents he used (he tried to negotiate low rates), or buying or selling the patent rights as seemed appropriate. He also licensed his patents, and rented out buildings he didn’t need. He rented at a rate of 7% of the sale price, a metric I’ve used myself, considering rental to be like buying on loan. There is a theory of stock-buying that matches this.

The story the telegraph cable across the Atlantic is instructive to seeing how the pieces fit together. The first significant underwater cable was not laid by Cooper, by a Canadian inventor, Frederick Gisborne. It was laid in 1852 between Prince Edward Island and New Brunswick. Through personal connections, Gisborne’s company got exclusive rights for 30 years, for this and for a cable that would go to Newfoundland, but he didn’t have the money or baking to make it happen. The first cable failed, and Gisborne ran out of money and support. Only his exclusive rights remained. This is the typical story of an inventor/ engineer/businessman who has to rely on other peoples’ money and patience.

A few months after the failure, a friend of Cooper’s, Cyrus Field, convinced Cooper that good money could be made, and public good could be done, if Cooper could lay such a cable all the way to London. One thing that attracted Cooper to the project was that the cable could be made as an insulated iron-copper rope in Cooper’s own factory. Cooper, Field, and some partners (see painting below) bought Gisborne’s company, along with their exclusive rights, and formed a new company, The New York, Newfoundland & London Telegraph Company, see charter here. The founders are imagined* with a globe and a section of cable sitting on their table. Gisborne, though not shown in the painting, was a charter member, and made chief engineer. Cooper was president. He also traveled on the boat with Gisborne to lay the cable across the St. Lawrence – just to be sure he knew what was going on. This cable provided a trial for The Trans Atlantic cable.

The founding individuals to lay a transatlantic cable. Peter Cooper at left is the chairman, Cyrus Field is standing, Samuel Morse is at the back. Frederic Gisborne, a founder, does not appear in the paining. Typical.

Samuel Morse was hired as an electrician; he is pictured in the painting, but was not a charter member. Part of the problem with Morse was that he owned the patent on Morse-telegraphy, and Cooper didn’t want to pay his “exorbitant” fees. So Cooper and Field bought an alternative telegraph patent from David Hughes, a Kentucky school teacher. This telegraph system used tones instead of clicks and printed whole letters at a time. By hiring Morse, but not his patents, Cooper saved money, while retaining Morse’s friendship and expertise. The alternative could have been a nasty spat. Their telegraph company sub-licensed Hughes’s tone-method a group of western telegraph owners, “The Western Union,” who used it for many years, producing the distinctive Western Union Telegrams. With enough money in hand and credibility from the Canadian trial, the group secured 50 years monopoly rights for a telegraph line across the Atlantic. Laying the cable took many years, with semi-failed attempts in 1857, 1858, and 1865. When the eventual success came in 1866, the 50 years’ monopoly rights they’d secured meant that they made money from the start. They could treat workers fairly. Marconi would discover that Cooper wrote a good contract; his wireless telegraph required a widely different route.

I should also note that Peter Cooper was politically active: he started as a Democrat, helped form the Republican Party, bringing Lincoln to speak in NY for the first time, and ended up founding the Greenback-Labor Party, running for president as a Greenback. He was strongly for tariffs, and strongly against inflation. He said that the dollar should have the same value for all time for the same reason that the foot should have the same length and the pound the same weight. I have written in favor of tariffs off and on. They help keep manufacturing in America, and help insure that those who require French wine or German cars pay the majority of US taxes. They are also a non-violent vehicle for foreign policy.

Operating under these principles, through patents and taxed monopolies, Peter Cooper died wealthy, and liked. Liked by his workers, liked by much of the press, and by his family too, with children who turned out well. The children of rich people often turn out poorly. Carnegie’s children fought each other in court, Ford’s were miserable. Cooper’s children continued in business and politics, successfully and honorably, and in science/ engineering (Peter Coper Hewitt invented the power rectifier, sold to Westinghouse). The success of Peter Cooper’s free college, Cooper Union, influenced many of his friends to open similar institutions. Among his friends who did this were Carnegie, Pratt, Stevens, Rensselaer, and Vanderbilt. He stayed friends with them and with other inventors of the day, despite competing in business and politics. Most rich folks can not do this; they tend to develop big egos, and few principles.

Robert Buxbaum, November 30, 2022. I find the painting interesting. Why was it painted? Why is Gisborne not in it and Morse in the painting — sometimes described as vice President? The charter lists Morse as “electrician”, an employee. Chandler White, holding papers next to Cooper, was Vice President. My guess is that the painting was made to help promote the company and sell stock. They made special cigars with this image too. This essay started as a 5th grade project with my son. See a much earlier version here.

Mechanical Engineer v Civil Engineer Joke

What’s the difference between a mechanical engineer and a civil engineer?

 

 

Mechanical engineers make weapons; civil engineers make targets.

 

 

Is funny because ….. it’s sort of true. Much of engineering is war-related, and always was. In earlier times, an engineer was someone who made engines of war: catapults, battering rams, and the like. Nowadays, mechanical engineers are the main designers for tanks, cannons, and ships. A civil engineer is one whose projects have civilian applications. But as these projects have military uses (roads, ports, offices, and bridges, for example), civilian projects are major targets for an opposing army.

An observation about war and peace: if you are really at making peacetime products, you’re a hero in your country and outside; if you design weapons, you are vilified by the enemy and likely to become a prisoner in your own land. Consider the designers of the atom bomb in the US, Russia, Israel, India, or Iran. They can’t go abroad, and are likely suspect at home. The leaders have to worry that these scientists will give the same weapons to their enemies (it’s happened) or that they will not be dedicated enough to make the next iteration of the weapon (ditto).

My advice: specialize items for peacetime or civilian use if you can. Those who make better cars, music, art or architecture are welcome everywhere; advances in death usually rebound on the inventor. Here’s a joke comparing chemists and chemical engineers, a piece on a favorite car engine advance, on perfect tuning of musical instrumentsan architecture joke, and a control engineer joke. People like civil engineers.

What sort of guy does a king keep locked in the castle dungeon — not the common thief.  #wordstothewise.

R. E. Buxbaum, August 1, 2013. I’m a chemical engineer, who makes hydrogen stuff and consults, mostly for peace-time use.

Control engineer joke

What made the control engineer go crazy?

 

He got positive feedback.

Is funny because …… it’s a double entente, where both meanings are true: (1) control engineers very rarely get compliments (positive feedback); the aim of control is perfection, something that’s unachievable for a dynamic system (and generally similar to near perfection: the slope at a maximum is zero). Also (2) systems go unstable if the control feedback is positive. This can happen if the controller was set backwards, but more usually happens when the response is too fast or too extreme. Positive feedback pushes a system further to error and the process either blows up, or (more commonly) goes wildly chaotic, oscillating between two or more “strange attractor” states.

It seems to me that hypnosis, control-freak love, and cult behaviors are the result of intentionally produced positive feedback. Palsies, economic cycles, and global warming are more likely the result of unintentional positive feedback. In each case, the behavior is oscillatory chaotic.

The  normal state of Engineering is lack of feedback. Perhaps this is good because messed up feedback leads to worse results. From xykd.

Our brains give little reliable feedback on how well they work, but that may be better than strong, immediate feedback, as that could lead to bipolar instability. From xkcd. For more on this idea, see Science and Sanity, by Alfred Korzbski (mini youtube)

Control engineers tend to be male (85%), married (80%), happy people (at least they claim to be happy). Perhaps they know that near-perfection is close enough for a complex system in a dynamic world, or that one is about as happy as believes ones-self to be. It also helps that control engineer salaries are about $95,000/ year with excellent benefits and low employment turnover.

Here’s a chemical engineer joke I made up, and an older engineering joke. If you like, I’ll be happy to consult with you on the behavior of your processes.

By Dr. Robert E. Buxbaum, July 4, 2013