Tag Archives: Elon Musk

Disney was a narcissist, like Trump, Putin, Musk, and Martin Luther King. It’s not a disease.

Among TV psychiatrists, the universal opinion of Trump, Putin, and Musk, that these individuals are narcissists, a psychological disease related to “toxic masculinity.” Musk, for his part claims the excuse of Asperger’s disease, high-functioning Autism. I half agree with the Narcissist diagnosis, and I’m confused by the Asperger’s claim because I don’t believe these folks are diseased. My sense is they have a leadership personality trait, common in all visionary leaders including Disney, Martin Luther King, and Genghis Khan. I’ve argued that it is important for a president to be a narcissist, and have explained Trump’s vision, “Make America great again” as independence.

Psychological narcissism, short for Narcissistic Personality Disorder, is a disease when it hurts the narcissists life. It is defined as a pattern of exaggerated feelings of self-importance, along with an excessive need for admiration. If it just annoys people it/s a disease, but it’s found among leaders, suggesting it’s not all bad. To get you to follow them, leaders present themselves as mini-messiahs, and try to get you to see them that way. They have a plan, a vision. If it’s successful, they’re visionaries. They fight to bring the vision into reality, which is very annoying to anyone who doesn’t see it or want it. But that’s leadership. Without it nothing big gets done.

Disney’s vision. Not everyone was pleased; quite a few considered him a tyrant.

For the narcissist to succeed, he or she must sell the vision, and his ability to get it done. The plan to get there is often vague and unattractive. These details are shared with only a few. You must see the leader there and yourself too, if you’re to fight for it. Disney was particularly visual, see photo. He got folks to buy into a building a magical kingdom with a private police force, where everyone is happy and cartoon characters glide among the paying visitors.

The majority of those who run into a narcissist reject both the vision and the narcissist. They fear any change, and fear that the success of the visionary will diminish them. For that reason, they run to no-bodies. But some see it, and follow, others throw stones. Disney got state officials to exempt him from state laws, and extend normal copyrights. Others smirked, and worked to stop him, but with less energy: it’s hard to be enthusiastic about no Disneyland. The conflict between doers and the smirkers is the subject of several Ayn Rand books, including The Fountainhead and Atlas Shrugged. She calls the opposing smirkers, “parasites”, “looters”, “moochers,” and my favorite: “do gooders.” It’s for the common good that the narcissist should fail, they claim.

Often these opponents have good reasons to oppose. The Ayatollah Khomeini had a vision similar to Disney: an Islamic Republic in Iran where everyone is happy being a devout Muslim of his stripe. The opponents feared, correctly, that everyone who was not happy would be flogged, hanged, or beheaded. I think it’s legitimate to not want to be forced to be devout. Similarly, with Genghis Khan, or Vladimir Putin. Putin compares himself to Peter the Great who expanded Russia and conquered Crimea. The opponents have legitimate fears of WWII and claim that Ukrainian independence is semi legit. Regarding Musk’s plans to colonize Mars, I note that Neil Armstrong and Gene Cernan have come out against it. There is no right or wrong here, but I have a soft spot for the visionaries, and a suspicion of the “smirkers” and “do gooders.”

Genghis Khan. He saw himself as a world changer. Some followed, some didn’t. Those who followed didn’t think he was crazy.

The smirkers and do-gooders include the most respectable people of today. They are thought leaders, who lose status if someone else exceeds them. They are surprised and offended by Martin Luther King’s dream, and Musk’s, Khomeini’s, Trump’s, and Lenin’s. Trump became president against formidable odds, and the smirkers said it was a fluke, he then lost, and they claimed it showed they were right. He may get a second term, though, and Musk may yet build a community on Mars. To the extent that the visionary succeeds, the smirkers claim it was easy; that they could have done the same, but faster and better. They then laud some fellow smirker, and point out aspects of the vision that failed. In any case, while the narcissist is definitely abnormal, it’s not a disease, IMHO. It’s what makes the world go round.

Robert Buxbaum, June 7, 2023

Plans to Raise-the-Dead-Sea

The Dead Sea in Israel is a popular tourist attraction and health resort-area. It is also the lowest point on the planet, with a surface about 430m below sea level. Its water is saturated with an alkaline salt, and quite devoid of life, and it’s shrinking fast, loosing about 1 m in height every year. The Jordan river water that feeds the sea is increasingly drawn off for agriculture, and is now about 10% of what it was in the 1800s. The Dead Sea is disappearing fast, a story that is repeated with other inland seas: the Aral Sea, the Great Salt Lake, etc. In theory, one could reverse the loss using sea water. In theory, you could generate power dong this too: 430m is seven times the drop-height of Niagara Falls. The problem is the route and the price.

Five (or six) semi-attractive routes have been mapped out to bring water to the Dead Sea, as shown on the map at right. The shortest, and least expensive is route “A”. Here, water from the Mediterranean enters a 12 km channel near Haifa; it is pumped up 50m and travels in a pipe for about 52 km over the Galilean foothills, exiting to a power station as shown on the elevation map below. In the original plan the sea water feeds into the Jordan river, a drop of about 300m. The project had been estimated to cost $3 B. Unfortunately, it would make much of the Jordan river salty. It was thus deemed unacceptable. A variation of this would run the seawater along the Jordan in a pipe or an open channel. This would add to the cost, and would likely diminish the power that could be extracted, but you would not contaminate the Jordan.

A more expensive route, “B”, is shorter but it requires extensive tunneling under Jerusalem. Assuming 20 mies of tunnel at $500 MM/mile, this would cost $10B. It also requires the sea water to flow through the Palestinian West Bank on its way to the sea. This is politically sensitive and is unlikely to be acceptable to the West Bank Palestinians.

Vertical demand of the northern route

Two other routes, labeled “C” and “D” are likely even more expensive than route B. They require the water to be pumped over the Judaean hills near Bethlehem, south of Jerusalem. That’s perhaps 600m up. The seawater would flow from Ashkalon or Gaza and would enter the Dead Sea at Sodom, near Masada. Version C is the most politically acceptable, since it’s short and does not go through Palestinian land. Also, water enters the dead sea at its saltiest point so there is no disruption of the environment. Route D is similar to C, somewhat cheaper, but a lot more political. It goes through Gaza.

The longest route, “E” would go through Jordan taking water from the Red Sea. Its price tag is said to be $10 B. It’s a relatively flat route, but still arduous, rising 210m. As a result it’s not clear that any power would be generated. A version of this route could send the water entirely through Israel. It’s not clear that this would be better than Route C. Looking things over, it was decided that only routes that made sense are those that avoided Palestinian land. An agreement was struck with Jordan to go ahead with route D, with construction to begin in 2021. The project has been on hold though because of cost, COVID, and governmental inertia.

In order to make a $5-10B project worthwhile, you’ll have to generate $500MM to $1B/year. Some of this will come from tourism, but the rest must come from electrical power generation. As an estimate of power generation, let’s assume that that the flow is 65 m3/s, just enough to balance the evaporation rate. Assuming a 400 m power drop and an 80% efficient turbine, we should generate 80% of 255 MWe = about 204 MWe on average. Assuming a value of electricity of 10¢/kWh, that translates to $20,000/ hour, or $179 million per year. This is something, but not enough to justify the cost. We might increase the value of the power by including an inland pond for water storage. This would allow power production to be regulated to times of peak load, or it could be used for recreation, fish-farming, or cooling a thermal power station up to 1000 MWe. These options almost make sense, but with the tunnel prices quoted, the project is still too expensive to make sense. It is “on hold” for now.

It’s not like the sea will disappear if nothing is done. With 10% of the original in-flow of water to the Dead Sea, it will shrink to 10% its original size, and then stop shrinking. At that point evaporation will match in-flow. One could add more fresh water by increasing the flow from the sea of Galilee, but that water is needed. When more water is available, more is taken out for farming. This is what’s happened to the Arial Sea — it’s now about 10% the original size, and quite salty.

Elon Musk besides the prototype 12 foot diameter tunnel.

There’s a now a new tunnel option though and perhaps these routes deserve a second look: Elon Musk claims his “Boring company” can bore long tunnels of 12 foot diameter, for $10-20 MM/mile. This should be an OK size for this project. Assuming he’s right about the price, or close to right, the Dead Sea could be raised for $1B or so. At that price-point, it makes financial sense. It would even make sense if one built multiple seapools, perhaps one for swimming and one for energy storage, to be located before the energy-generating drop, and another for fish after. There might even be a pool that would serve as coolant for a thermal power plant. Water in the desert is welcome, even if it’s salt water.

Robert Buxbaum, February 14, 2023.

Comparing Artemis SLS to Saturn V and Falcon heavy

This week, the Artemis I, Orion capsule splashed down to general applause after circling the moon with mannequins. The launch cost $4.1 Billion, and the project, $50 Billion so far, of $93 Billion expected. Artemis II will carry people around the moon, and Artemis III is expected to land the first woman and person of color. The goal isn’t one I find inspiring, and I feel even less inspired by the technology. I see few advances in Artemis compared to the Saturn V of 50 years ago. And in several ways, it looks like a step backwards.

The graphic below compares the Artemis I SLS (Space Launch System) to the Saturn V. The SLS is 10% lighter, but the payload is lighter, too. It can carry 27 tons to the moon, while the Saturn V sent 50 tons to the moon. I’d expect more weight by now. We have carbon fiber and aramids, and they did not. Add to this that the cost per flight is higher, $4.1 B, versus $1.49 B in 2022 dollars for a Saturn V ($185 million in 1969 dollars). What’s more there was no new engine development or production, so the flight numbers are limited: Each SLS launch throws away five, space shuttle engines. When they are all gone, the project ends. We have no plans or ability to make more engines.

Comparison of Apollo Saturn V and Artemis SLS. The SLS has less lift weight and costs more per launch.

As it happens, there was a better alternative available, the Falcon heavy from SpaceX. The Falcon heavy has been flying for 5 years now, and costs only $141 million per launch, about 1/30 as much as an Artemus launch. The rocket is largely reusable, with 3D printed engines, and boosters that land on their tails. Each SLS is expensive because it’s essentially a new airplane built specially for each flight. Every part but the capsule is thrown away. Adding to the cost of SLS launches is the fuel; hydrogen, the same fuel as the space shuttle. Per energy it’s very expensive. The energy cost for the SLS boosters is high too, and the efficiency is low; each SLS booster costs $290M, more than the cost of two Falcon heavy launches. Falcon launches are cheap, in part because the engines burn kerosine, as did the Saturn V at low altitude. Beyond cost hydrogen has low thrust per flow (low momentum), and is hard to handle; hydrogen leaks caused two Artemis scrubs, and numerous Shuttle delays. I discussed the physics of rocket engines in a post seven years ago.

This graph of $/kg to low earth orbit is mostly from futureblind.com. I added the data for Artemis SLS. Saturn V and Falcon use cheaper fuel and a leaner management team.

It might be argued that Artemis SLS is an inspirational advance because it can lift an entire moon project in one shot, but the Saturn V lifted that and more, all of Skylab. Besides, there is no need to lift everything on one launch. Elon Musk has proposed lifting in two stages, sending the moon rocket and moon lander to low earth orbit with one launch, then lifting fuel and the astronauts on a second launch. Given the low cost of a Falcon heavy launch, Musk’s approach is sure to save money. It also helps develop space refueling, an important technology.

Musk’s Falcon may still reach the moon because NASA still needs a moon lander. NASA has awarded the lander contract to three companies for now, Jeff Bezos’s Blue Origin, Dynetics-Aerodyne makers of the Saturn V, and Musk’s SpaceX. If the SpaceX version wins, a modified Falcon will be sent to the moon on a Falcon heavy along with a space station. Artemis III will rendezvous with them, astronauts will descend to the moon on the lander, and will use the lander to ascend. They’ll then transfer to an Orion capsule for the return journey. NASA has also contracted with Bezos’s Blue origin for planetary, Earth observation, and exploration plans. I suspect that Musk’s lander will win, if only because of reliability. There have been 59 Falcon launches this year, all of them with safe landings. By contrast, no Blue Origin or Dynetics rocket has landed, and Blue Origin does not expect to achieve orbital velocity till 2025.

As best I can tell, the reason we’re using the Artemis SLS with its old engines is inspiration. The Artemis program director, Charlie Blackwell-Thompson is female, and an expert in space shuttle engines. Previous directors were male. Previous astronauts too were mostly male. Musk is not only male, but his products suffer from him being considered a horrible person, a toxic male, in the Tony Stark (Iron Man) mold. Even Jeff Bezos and Richard Branson are considered better, though their technology is worse. See my comparison of SpaceX, Virgin Blue, and Blue Origin.

To me, the biggest blocks to NASA’s inspirational aims, in my opinion, are the program directors who gave us the moon landing. These were two Nazi SS commanders (SS Sturmbannführers), Arthur Rudolph and Wernher Von Braun. Not only were they male and white, they were barely Americanized Nazis, elevated to their role at NASA after killing off virtually all of their 20,000, mostly Jewish, slave workers making rockets for Hitler. Here’s a song about Von Braun, by Tom Lehrer. Among those killed was Von Braun’s professor. In his autobiography, Von Braun showed no sign of regret for any of this, nor does he take blame. The slave labor camp they ran, Dora-Mittelbau, had the highest death rate of all slave labor camps, and when some workers suggested that they could work better if they were fed, the directors, Rudolph and Von Braun had 80 machine gunned to death. Still, Von Braun got us to the moon, and his inspirational comments line the walls at NASA, Kennedy. Blackwell-Thompson and Bezos are surely more inspirational, but their designs seem like dead ends. We may still have to use Musk’s SpaceX if we want a lander or a moon program after the space shuttle’s engines are used up. As Von Braun liked to point out, “Sacrifices have to be made.”

Robert Buxbaum, December 21, 2022. Here’s a bit more about Rudolph, von Braun, the Peenemünda rocket facility, and the Dora-Mittelbau slave labor camp. I may post photos of Von Braun with Hitler and Himmler in SS regalia, but feel uncomfortable doing so at the moment. I feel similarly about posting links to Von Braun’s inspirational interviews.

Branson’s virgin spaceplane in context.

Virgin Galactic Unity 22, landing.

Branson’s Virgin Space Ship (VSS) Unity was cheered as a revolutionary milestone today (July 10) after taking Branson, three friends and two pilots on a three minute ride to the edge of space, an altitude of 53.5 miles or 283,000 feet. I’d like to put that achievement into contest, both with previous space planes, like the Concorde and X-15 (the 1960s space plane), and also in context with the offerings of Elon Musk’s Space-X and Bezos’s, Blue Horizon.

To start with, the VSS Unity launched from a sub-sonic mother ship, as the X-15 had before it. This saves a lot in fuel weight and safety equipment, but it makes scale up problematic. In this case, the mother-ship was named Eve. Unity launched from Eve at 46,000 feet, about 9 miles up, and at Mach 0.5; it took Eve nearly 90 minutes to get to altitude and position. It was only after separation, that Unity began a one minute, 3 G rocket burn that brought it to its top speed, Mach 3, at about 16 miles up. What followed was a 3 minute, unpowered glide to 53.5 miles and down. Everyone seems to have enjoyed the three minutes of weightlessness, and it should be remembered that there is a lot of difference between Mach 3 and orbital speed, Mach 31. Also there is a lot of difference between a sub-orbital and orbital.

Concorde SST landing in Farnborough.

By comparison, consider the Concorde SSTs that first flew in 1976. It reached about 2/3 the speed of Unity, Mach 2.1, but carried 120 commercial passengers. It took off from the ground and maintained this speed for 4500 miles, going from London to Houston in 4.5 hours. While the Concorde only reached an altitude of 60,000 feet, it is far more impressive going at Mach 2.1 for 4.5 hours than going at Mach 3 for three minutes. And there is a lot of difference between 120 passengers and 4. There is also the advantage of taking off from the ground. A three minute ride in a space plane should not require a 90 minute ascent on a mother ship.

X-15 landing, 1962.

Next consider the X-15 rocket plane of the 1960s. This was a test platform devoted to engine and maneuverability tests; it turns out that maneuverability is very difficult. The X-15 hit a maximum altitude of 354,200 ft, 67 miles, and a maximum speed of Mach 6.72, or 4520 mph. That’s significantly higher than Branson’s VSS, and double the maximum speed. As an aside, the X-15 project involved the development of a new nickel alloy that I use today, Inconel X-750. I use this as a support for my hydrogen membranes. If any new materials were developed for VSS, none were mentioned.

The Air Force’s X-37B Orbital Test Vehicle at Kennedy Space Center, May 7, 2017.

Continuing with the history of NASA’s X-program, we move to the X-41, a air-breathing scramjet of the 1980s and 90s. It reached 95,000 feet, and a maximum speed of Mach 9.64. That’s about three times as fast as Virgin’s VSS. The current X-plane is called X-37B, it is a rocket-plane like the X-15 and VSS, but faster and maneuverable at high speed and altitude. It’s the heart of Trump’s new, US Space force. In several tests over the past 5 years, it has hit orbital speed, 17,426 mph, Mach 31, and orbital altitudes, about 100 miles, after being launched by a Atlas V or a Falcon 9 booster. The details are classified. Apparently it has maneuverability. While the X-37B is unmanned, a larger, manned version, is being built, the X-37C. It is supposed to carry as many as six.

Reaching orbital speed or Mach 31 implies roughly 100 times as much kinetic energy per mass as reaching the Mach 3.1 of Virgin’s VSS. In this sense, the space shuttle, and the current X-plane are 100 times more impressive than Virgin’s VSS. There is also a lot to be said for maneuverability and for a longer flight duration– more than a few minutes. Not that I require Branson to beat NASA’s current offerings, but I anyone claiming cutting edge genius and visionary status should at least beat NASA’s offerings of the 1960s, and the Concorde planes of 1976.

Bezos’s Blue Origin, and the New Shepard launcher.

And that bring’s us to the current batch of non-governmental, space cadets. Elon Musk stands out to me as a head above the rest, at least. Eight years ago, his Grasshopper rocket premiered the first practical, example of vertical take off and landing booster. Today, his Falcon 9 boosters send packages into earth orbit, and beyond, launching Israel’s moon project, as one example. That implies speeds of Mach 31 and higher, at least at the payload. It’s impressive, even compared to X-37, very impressive.

Bezos’ offering, the Blue Origin Shepherd, seems to me like a poor imitation of the SpaceX Falcon. Like Falcon, it’s a reusable, vertical takeoff and landing platform, that launches directly from earth, and like Falcon it carries a usable payload, but it only reaches speeds of Mach 3 and altitudes about 65 miles. Besides, the capsule lands by way of parachutes, not using wings like the space shuttle, or the X-37B, and there is no reusable booster like Falcon. Blue Origin started carrying payloads only in 2019, five yers after SpaceX. There is nothing here that’s cutting edge, IMHO, and I don’t imagine it will be cheaper either.

Branson has something that the other rocket men do not have, quite: a compelling look: personal marketing, a personal story, and a political slant that the press loves and I find hypocritical and hokey. The press, and our politicians, managed to present this flight as more than an energy wasting, joy ride for rich folks. Instead, this is accepted as Branson’s personal fight against climate change. Presented this way, it should qualify as a tax-dodge. I don’t see it getting folks to stop polluting and commit to small cars, but the press is impressed, or claims to be. The powers have committed themselves to this type of Tartuffe, and the press goes along. You’d think that, before giving Branson public adoration for his technology or environmentalism, he should have cutting technology and have been required to save energy, or pollute less. At least beat the specs of the X-15. Just my opinion.

Robert Buxbaum, July 12, 2021

Hydrogen powered trucks and busses

With all the attention on electric cars, I figure that we’re either at the dawn of electric propulsion or of electric propulsion hype. Elon Musk’s Tesla motor car company stock is now valued at $59 B, more than GM or Ford despite the company having massive losses and few cars. It’s a valuation that, I suspect, hangs on the future of autonomous vehicles, a future whose form is uncertain. In this space, I suspect that hydrogen-battery hybrids make more sense than batteries alone, and that the first large-impact uses will be trucks and busses — vehicles that go long distance on highways.

Factory floor, hydrogen fueling station for plug-power forklifts. Plug FCs reached their 10 millionth refueling this January.

Factory floor, hydrogen fueling station for fuel cell forklifts. This company’s fuel cells have had over 10 million refuelings so far.

Currently there are only two brands of autonomous vehicle available for sale in the US: the Cadillac CT6, a gasoline hybrid, and the Tesla, a pure battery vehicle. Neither work well except on highways because there are fewer on-highway driver-issues. Currently, the CT6 allows you to take your hands off the wheel — see review here. This, to me, is a big deal: it’s the only real point of autonomous control, and if one can only do this on the highway, that’s still great. Highway driving gets tiring after the first hundred miles or so, and any relief is welcome. With Tesla cars, you can never take your hand off the wheel or the car stops.

That battery cars compete, cost wise, I suspect, is only possible because the US government highly subsidizes the battery cost. Musk hides the true cost of the battery, I suspect, among the corporate losses. Without this subsidy, hydrogen – hybrid vehicles, I suspect, would be far cheaper than Tesla while providing better range, see my calculation here. Adding to the advantage of hybrids over our batteries, the charge time is much faster. This is very important for highway vehicles traveling any significant distance. While hydrogen fuel isn’t as cheap as gasoline, it’s becoming cheaper — now about double the price of gasoline on a per mile basis, and it’s far cheaper than batteries when the wear-and tear life of the batter is included. And unlike gasoline, hydrogen propulsion is pollution-free  and electric.

Electric propulsion seems better suited to driverless vehicles than gasoline propulsion because of how easy it is to control electricity. Gasoline vehicles can have odd acceleration issues, e.g. when the gasoline gets wet. And it’s not like there are no hydrogen fueling stations. Hydrogen, fuel-cell power has become a major competitor for fork-lifts, and has recently had its ten millionth refueling in that application. The same fueling stations that serve fork-lift users could serve the self-driving truck and bus market. For round the town use, hydrogen vehicles could use battery power along (plug-in hybrid mode). A vehicle of this sort could have very impressive performance. A Dutch company has begun to sell kits to convert Tesla model S autos to a plug-in hydrogen hybrid. The result boasts a 620 mile (1000 km) range instead of the normal 240 miles; see here. On the horizon, Hyundai has debuted the self-driving “Nexo” with a range of 370 miles. Self-driving Nexos were used to carry spectators between venues at the Pyongyang olympics. The Toyota Mirai (312 miles) and the Honda Clarity Fuel Cell (366 miles) can be expected to début with similar capabilities in the near future.

Cadillac CT6 with supercruise. An antonymous vehicle that you can buy today that allows you to take your hand off the wheel.

Cadillac CT6 with supercruise. An autonomous vehicle that you can buy today that allows you to take your hand off the wheel.

In the near-term, trucks and busses seem more suited to hydrogen than general-use cars because of the localization of hydrogen refueling, Southern California has some 36 public hydrogen refueling stations at last count, but that’s too few for most personal car users. Other states have even fewer spots; Michigan has only two where one can drive up and get hydrogen. A commercial trucking company can work around this if they go between fixed depots that may already have hydrogen dispensers, or can be fitted with dispensers. Ideally they use the same dispensers as the forklifts. If one needs extra range one can carry a “hydrogen Jerry can” or two — each jerry can providing an extra 20-30 miles of emergency range. I do not see electric vehicles working as well for trucks and busses because the charge times are too slow, the range is too modest, and the electric power need is too large. To charge a 100 kWhr battery in an hour requires an electric feed of over 100 kW, about as much as a typical mall. With a, more-typical 24kW (240 V at 100 Amps) service the fastest you can recharge would be 4 1/2 hours.

So why not stick to gasoline, as with the Cadillac? My first, simple answer is electric control simplicity. A secondary answer is the ability to use renewable power from wind, solar, and nuclear; there seems to be a push for renewable and electric or hydrogen vehicles make use of this power. Of these two, only hydrogen provides the long-range, fast fueling necessary to make self-driving trucks and busses worthwhile.

Robert Buxbaum March 12, 2018. My company, REB Research provides hydrogen purifiers and hydrogen generators.

If the wall with Mexico were covered in solar cells

As a good estimate, it will take about 130,000 acres of solar cells to deliver the power of a typical nuclear facility, 26 TWhr/year. Since Donald Trump has proposed covering his wall with Mexico with solar cells, I came to wonder how much power these cells would produce, and how much this wall might cost. Here goes.

Lets assume that Trump’s building a double wall on a strip of land one chain (66 feet) wide, with a 2 lane road between. Many US roads are designed in chain widths, and a typical, 2 lane road is 1/2 chain wide, 33 feet, including its shoulders. I imagine that each wall is slanted 50° as is typical with solar cells, and that each is 15 to 18 feet high for a good mix of power and security. Since there are 10 square chains to an acre, and 80 chains to a mile we find that it would take 16,250 miles of this to produce 26 TWhr/year. The proposed wall is only about 1/10 this long, 1,600 miles or so, so the output will be only about 1/10 as much, 2.6 TWhr/year, or 600 MW per average daylight hour. That’s not insignificant power — similar to a good-size coal plant. If we aim for an attractive wall, we might come to use Elon Musk’s silica-coated solar cells. These cost $5/Watt or $3 Billion total. Other cells are cheaper, but don’t look as nice or seem as durable. Obama’s, Ivanpah solar farm, a project with durability problems, covers half this area, is rated at 370 MW, and cost $2.2 Billion. It’s thus rated to produce slightly over half the power of the wall, at a somewhat higher price, $5.95/Watt.

Elon Musk with his silica solar panels.

Elon Musk with his, silica-coated, solar wall panels. They don’t look half bad and should be durable.

It’s possible that the space devoted to the wall will be wider than 66 feet, or that the length will be less than 1600 miles, or that we will use different cells that cost more or less, but the above provides a good estimate of design, price, and electric output. I see nothing here to object to, politically or scientifically. And, if we sell Mexico the electricity at 11¢/kWhr, we’ll be repaid $286 M/year, and after 12 years or so, Republicans will be able to say that Mexico paid for the wall. And the wall is likely to look better than the Ivanpah site, or a 20-year-old wind farm.

As a few more design thoughts, I imagine an 8 foot, chain-link fence on the Mexican side of the wall, and imagine that many of the lower solar shingles will be replaced by glass so drivers will be able to see the scenery. I’ve posited that secure borders make a country. Without them, you’re a tribal hoard. I’ve also argued that there is a pollution advantage to controlling imports, and an economic advantage as well, at least for some. For comparison, recent measurement of the Great Wall of China shows it to be 13,170 miles long, 8 times the length of Trump’s wall with China.

Dr. Robert E. Buxbaum, June 14, 2017.