Tag Archives: El Niño

Patterns in climate; change is the only constant

There is a general problem when looking for climate trends: you have to look at weather data. That’s a problem because weather data goes back thousands of years, and it’s always changing. As a result it’s never clear what start year to use for the trend. If you start too early or too late the trend disappears. If you start your trend line in a hot year, like in the late roman period, the trend will show global cooling. If you start in a cold year, like the early 1970s, or the small ice age (1500 -1800) you’ll find global warming: perhaps too much. Begin 10-15 years ago, and you’ll find no change in global temperatures.

Ice coverage data shows the same problem: take the Canadian Arctic Ice maximums, shown below. If you start your regression in 1980-83, the record ice year (green) you’ll see ice loss. If you start in 1971, the year of minimum ice (red), you’ll see ice gain. It might also be nice to incorporate physics thought a computer model of the weather, but this method doesn’t seem to help. Perhaps that’s because the physics models generally have to be fed coefficients calculated from the trend line. Using the best computers and a trend line showing ice loss, the US Navy predicted, in January 2006, that the Arctic would be ice-free by 2013. It didn’t happen; a new prediction is 2016 — something I suspect is equally unlikely. Five years ago the National Academy of Sciences predicted global warming would resume in the next year or two — it didn’t either. Garbage in -garbage out, as they say.

Arctic Ice in Northern Canada waters, 1970-2014 from icecanada.ca 2014 is not totally in yet. What year do you start when looking for a trend?

Arctic Ice in Northern Canada waters, 1971-2014 from the Canadian ice service 2014 is not totally in yet , but is likely to exceed 2013. If you are looking for trends, in what year do you start?

The same trend problem appears with predicting sea temperatures and el Niño, a Christmastime warming current in the Pacific ocean. This year, 2013-14, was predicted to be a super El Niño, an exceptionally hot, stormy year with exceptionally strong sea currents. Instead, there was no el Niño, and many cities saw record cold — Detroit by 9 degrees. The Antarctic ice hit record levels, stranding a ship of anti warming activists. There were record few hurricanes.  As I look at the Pacific sea temperature from 1950 to the present, below, I see change, but no pattern or direction: El Nada (the nothing). If one did a regression analysis, the slope might be slightly positive or negative, but r squared, the significance, would be near zero. There is no real directionality, just noise if 1950 is the start date.

El Niño and La Niña since 1950. There is no sign that they are coming more often, or stronger. Nor is there evidence even that the ocean is warming.

El Niño and La Niña since 1950. There is no sign that they are coming more often, or stronger. Nor is clear evidence that the ocean is warming.

This appears to be as much a fundamental problem in applied math as in climate science: when looking for a trend, where do you start, how do you handle data confidence, and how do you prevent bias? A thought I’ve had is to try to weight a regression in terms of the confidence in the data. The Canadian ice data shows that the Canadian Ice Service is less confident about their older data than the new; this is shown by the grey lines. It would be nice if some form of this confidence could be incorporated into the regression trend analysis, but I’m not sure how to do this right.

It’s not so much that I doubt global warming, but I’d like a better explanation of the calculation. Weather changes: how do you know when you’re looking at climate, not weather? The president of the US claimed that the science is established, and Prince Charles of England claimed climate skeptics were headless chickens, but it’s certainly not predictive, and that’s the normal standard of knowledge. Neither country has any statement of how one would back up their statements. If this is global warming, I’d expect it to be warm.

Robert Buxbaum, Feb 5, 2014. Here’s a post I’ve written on the scientific method, and on dealing with abnormal statistics. I’ve also written about an important recent statistical fraud against genetically modified corn. As far as energy policy, I’m inclined to prefer hydrogen over batteries, and nuclear over wind and solar. The president has promoted the opposite policy — for unexplained, “scientific” reasons.

Global warming takes a 15 year rest

I have long thought that global climate change was chaotic, rather than steadily warming. Global temperatures show self-similar (fractal) variation with time and long-term cycles; they also show strange attractors generally states including ice ages and El Niño events. These are sudden rests of the global temperature pattern, classic symptoms of chaos. The standard models of global warming is does not predict El Niño and other chaotic events, and thus are fundamentally wrong. The models assume that a steady amount of sun heat reaches the earth, while a decreasing amount leaves, held in by increasing amounts of man-produced CO2 (carbon dioxide) in the atmosphere. These models are “tweaked” to match the observed temperature to the CO2 content of the atmosphere from 1930 to about 2004. In the movie “An Inconvenient Truth” Al Gore uses these models to predict massive arctic melting leading to a 20 foot rise in sea levels by 2100. To the embarrassment of Al Gore, and the relief of everyone else, though COconcentrations continue to rise, global warming took a 15 year break starting shortly before the movie came out, and the sea level is, more-or-less where it was except for temporary changes during periodic El Niño cycles.

Global temperature variation Fifteen years and four El Niño cycles, with little obvious change. Most models predict .25°C/decade.

Fifteen years of global temperature variation to June 2013; 4 El Niños but no sign of a long-term change.

Hans von Storch, a German expert on global warming, told the German newspaper, der Spiegel: “We’re facing a puzzle. Recent CO2 emissions have actually risen even more steeply than we feared. As a result, according to most climate models, we should have seen temperatures rise by around 0.25 degrees Celsius (0.45 degrees Fahrenheit) over the past 10 years. That hasn’t happened. [Further], according to the models, the Mediterranean region will grow drier all year round. At the moment, however, there is actually more rain there in the fall months than there used to be. We will need to observe further developments closely in the coming years.”

Aside from the lack of warming for the last 15 years, von Storch mentions that there has been no increase in severe weather. You might find that surprising given the news reports; still it’s so. Storms are caused by temperature and humidity differences, and these have not changed. (Click here to see why tornadoes lift stuff up).

At this point, I should mention that the majority of global warming experts do not see a problem with the 15 year pause. Global temperatures have been rising unsteadily since 1900, and even von Storch expects this trend to continue — sooner or later. I do see a problem, though, highlighted by the various chaotic changes that are left out of the models. A source of the chaos, and a fundamental problem with the models could be with how they treat the effects of water vapor. When uncondensed, water vapor acts as a very strong thermal blanket; it allows the sun’s light in, but prevents the heat energy from radiating out. CObehaves the same way, but weaker (there’s less of it).

More water vapor enters the air as the planet warms, and this should amplify the CO2 -caused run-away heating except for one thing. Every now and again, the water vapor condenses into clouds, and then (sometimes) falls as rain or show. Clouds and snow reflect the incoming sunlight, and this leads to global cooling. Rain and snow drive water vapor from the air, and this leads to accelerated global cooling. To the extent that clouds are chaotic, and out of man’s control, the global climate should be chaotic too. So far, no one has a very good global model for cloud formation, or for rain and snowfall, but it’s well accepted that these phenomena are chaotic and self-similar (each part of a cloud looks like the whole). Clouds may also admit “the butterfly effect” where a butterfly in China can cause a hurricane in New Jersey if it flaps at the right time.

For those wishing to examine the longer-range view, here’s a thermal history of central England since 1659, Oliver Cromwell’s time. At this scale, each peak is an El Niño. There is a lot of chaotic noise, but you can also notice either a 280 year periodicity (lat peak around 1720), or a 100 year temperature rise beginning about 1900.

Global warming; Central England Since 1659; From http://www.climate4you.com

It is not clear that the cycle is human-caused,but my hope is that it is. My sense is that the last 100 years of global warming has been a good thing; for agriculture and trade it’s far better than an ice age. If we caused it with our  CO2, we could continue to use CO2 to just balance the natural tendency toward another ice age. If it’s chaotic, as I suspect, such optimism is probably misplaced. It is very hard to get a chaotic system out of its behavior. The evidence that we’ve never moved an El Niño out of its normal period of every 3 to 7 years (expect another this year or next). If so, we should expect another ice age within the next few centuries.

Global temperatures measured from the antarctic ice showing stable, cyclic chaos and self-similarity.

Global temperatures measured from the antarctic ice showing 4 Ice ages.

Just as clouds cool the earth, you can cool your building too by painting the roof white. If you are interested in more weather-related posts, here’s why the sky is blue on earth, and why the sky on Mars is yellow.

Robert E. Buxbaum July 27, 2013 (mostly my business makes hydrogen generators and I consult on hydrogen).