Tag Archives: conservation

My two-mode commode.

Our new, two-mode commode.

We just got a new toilet. Commonly called a commode, and it’s got a cool feature that I’d seen often in Europe but rarely in the US: two levels of flush strength. There is a “small flush” option that delivers, about 3 liters, intended for yellow waste, and a “big flush” option that delivers 6 liters. It’s intended for brown waste, or poop.

The main advantage of two mode flushing, in my opinion, is that the small flush is quieter than the normal. The quality of the flush is quite acceptable, even for brown waste because the elongated shape of the bowl seems better suited to pushing waste to the back, and down the drain. The flush valve is simple too, and I suspect the valve will last longer than the “flapper valve” of my older, one mode commodes. The secondary advantage is from some cost savings on water. That was about 1¢ per small flush in our area of Michigan, but the water department changed how they charge for water in our area and the cost savings have largely disappeared. Even under the old system, the savings in water cost amounted to only about $15 per year. At that rate it would take 15 years or more to pay for the new commode.

There is no real need for water savings in Michigan, and particularly not in our area, metro-Detroit. In other states there often is, but our drinking water comes from the Detroit river, and the cleaned up waste goes back to the river. It’s a cycle with no water lost no matter how much you flush, and no matter how big shower heads. I’d written in favor of allowing big flush toilets and big shower heads in our state, but the Obama administration ruled otherwise. Trump had promised to change that, but was impeached before he could. Even Trump had changed this, Biden has reversed virtually every Trump order related to resource use including those prohibiting China from providing critical technology to our water and power systems. Bottom line, you have to have a low-flush toilet, and you might as well get a two-mode.

Our commode has an elongated front, and I’d recommend that too. It can minimize floor dribbles, and that’s a good thing. The elongated shape also seems to provide a smoother flush path with less splatter. I would not recommend a “power flush” though for several reasons, among them that you get extra splatter and a louder flush noise. We’d bought a power flush some years ago, and in my opinion, it flushed no better than the ordinary toilet. It was very loud, and had a tendency to splatter. There was some slight water savings, but not worth it, IMHO.

Robert Buxbaum, February 8, 2021. I ran for water commissioner with several goals, among them to improve the fairness of billing, to decrease flooding, and to protect our water system from cyber attack.

Water Conservation for Michigan – Why?

The Michigan Association of Planners is big on water conservation, joining several environmental groups to demand legislation requiring water conservation:

POLICY 4. Water Conservation: The Michigan Association of Planning supports state legislation requiring water conservation for public, and private users.

Among the classic legislation passed so far are laws requiring low flush toilets, and prohibiting high-volume shower heads as in this Seinfeld episode. I suppose I should go along: I’m running for water commissioner, and consider myself a conservationist. The problem is, I can’t see a good argument for these laws for most people here in Oakland County, or in neighboring Macomb and Wayne Counties. The water can’t run out because most users take it from the river and return it to the river, cleaned after it’s used; it’s all recycled.

Map of the main drinking-water pipes serving south-east Michigan

Map of the main drinking-water pipes serving south-east Michigan

The map above shows the clean water system for south-east Michigan. The high-population areas, the ones that are colored in the map, get their water from the Detroit River or from Lake Huron. It’s cleaned, pumped, and carried to your home along the pipes shown. Then after you’ve used the water, it travels back along another set of pipes to the water treatment plant and into the Detroit River.

Three-position shower head -- a wonderful home improvement  I got it at universal plumbing.

Three-position shower head — a wonderful home improvement. I got it at universal plumbing.

When the system is working well, the water we return to the Detroit River is cleaner than the water we took in. So why legislate against personal use? If a customer wants to enjoy a good shower, and is willing to pay for the water at 1.5¢ per gallon, who cares how much water that customer uses? I can understand education efforts, sort-of, but find it hard to push legislation like we have against a high-volume shower head. We can not run out, and the more you use, the less everyone pays per gallon. A great shower head is a great gift idea, in my opinion.

The water department does not always work well, by the way, and these problems should be solved by legislation. We give away, for $200/year, high value clean water to Nestle company and then buy it back for $100,000,000. That’s a problem. Non-flushable toilet wipes are marketed as flushable; this causes sewer blockades. Our combined sewers regularly dump contaminated water into our rivers, lakes, and basements. These problems can be solved with legislation and engineering. It’s these problems that I’m running to solve.

Robert Buxbaum, January 6, 2019. If you want to save water, either to save the earth, or because you are cheep, here are some conservation ideas that make sense (to me).

No need to conserve energy

Earth day, energy conservation stamp from the 1970s

Energy conservation stamp from the early 70s

I’m reminded that one of the major ideas of Earth Day, energy conservation, is completely unnecessary: Energy is always conserved. It’s entropy that needs to be conserved.

The entropy of the universe increases for any process that occurs, for any process that you can make occur, and for any part of any process. While some parts of processes are very efficient in themselves, they are always entropy generators when considered on a global scale. Entropy is the arrow of time: if entropy ever goes backward, time has reversed.

A thought I’ve had on how do you might conserve entropy: grow trees and use them for building materials, or convert them to gasoline, or just burn them for power. Under ideal conditions, photosynthesis is about 30% efficient at converting photon-energy to glucose. (photons + CO2 + water –> glucose + O2). This would be nearly same energy conversion efficiency as solar cells if not for the energy the plant uses to live. But solar cells have inefficiency issues of their own, and as a result the land use per power is about the same. And it’s a lot easier to grow a tree and dispose of forest waste than it is to make a solar cell and dispose of used coated glass and broken electric components. Just some Earth Day thoughts from Robert E. Buxbaum. April 24, 2015

The joy of curtains

By Dr. Robert E. Buxbaum January 18, 2013

In our northern climates most homes have double-paned windows; they cost a fortune, and are a lot better than plain glass, but they still lose a lot of heat: far more than the equivalent area of wall. The insulation value is poor mostly because the thickness is low: a typical double pane window is only ½” thick. The glass panes have hardly any insulation value, so the majority of the insulation is the 0.3″ air space between them. Our outer walls, by contrast, are typically 6” thick filled with glass –wool. The wall is 12 times as thick as the window, and it turns out that the R value is about 12 times as great. Since window area is about 1/10 the wall area, we can expect that about half your homes heat goes out through the windows (about half the air-conditioner cooling in the summer too). A good trick to improve your home’s insulation, then, is to add curtains as this provides a fairly thick layer of stagnant air inside the room, right next to your windows.

To see how much you can save by adding curtains, it’s nice (for me, and my mind-set mostly) to talk in terms of R values. In the northern USA, the “R” value of a typical, well-insulated outer wall is about 24. What that means is that it takes 24°F and one square foot of wall to remove 1 BTU per hour. That is, the resistance to heat loss is 24 °F.hr.ft2/BTU. The R value for a typical double pane window is about 2 in the same units, and is only 1 if you have single panes. The insulating quality of our windows is so poor that, for many homes, more heat is lost through the windows than through the rest of the wall space.

To figure out how much heat is lost through your windows take the area in square feet multiply by a typical temperature differential (50°F might be typical in Michigan), and divide by the R value of your paned windows (1 or 2) depending on whether it’s single or double paned. Since heat costs about $10/MMBTU ($10 per million BTU) for a gas heated house, you can figure out what a small, 10 ft2 window costs a typical Michigan householder as follows, assuming a single pane (R=1):

Q = Area* ∆T/R = 10 ft2 * 50°F/1 = 500 BTU/hr. Here Q is the heat lost per unit time, ∆T is the temperature difference between the window surface and the room, and A is the ara of the window surface.

Since there are 24 hours in a day, and 30.5 days in a month the dollar cost of that window is 500*24*31.5*10/1,000,000 = $3.78/month. After a few years, you’ll have paid $200 for that small window in lost heat and another $200 in air conditioning.

A cheap solution is to add curtains, shades, or plastic of some sort. These should not be placed too close to the window, or you won’t have a decent air gap, nor so far that the air will not be static in the gap. For small gaps between the window glass and your plastic or curtain, the heat transfer rate is proportional to the thermal conductivity of air, k, and inversely proportional to the air gap distance, ∂.

Q = ∆T A k /∂.

R  = ∂/k.

The thermal conductivity of air, k, is about .024 BTU/ft. hr°F. We thus confirm that the the R-value for an air gap of 9/16” or 1/20 foot is about 2 in these units. Though the typical air gap between the glass is less, about .3″ there is some more stagnant air outside the glass an that counts towards the 9/16″ of stagnant air. The k value of glass or plastic is much higher than of air, so the layers of glass or plastic add almost nothing to the total heat transfer resistance.

Because the R value of glass and plastic is so low, if you cover your window with a layer of plastic sheet that touches the window, the insulation effect is basically zero. To get insulation value you want to use a gap between about ½” and 1” in thickness. If you already have a 2 paned window of R value 2, you can expect to be able to raise your insulation value to 4 by adding a plastic sheet or single curtain at 9/16” from the glass.

Sorry to say, you can’t raise this insulation value much higher than 4 by use of a single air gap that’s more than 1″ thick. When a single gap exceeds this size, the insulating value drops dramatically as gas circulation in the gap (free convection) drives heat transfer. That’s why wall insulation has fiber-glass fill. For your home, you will want something more attractive than fiberglass between you and the window pane, and typical approaches  include cellular blinds or double layer drapes. These work on the same principle as the single sheet, but have extra layers that stop convection.

My favorite version of the double drapes is the federalist version, where the inner drape is near transparent, shim cloth hangs close to the window, with a heavier drape beyond that. The heavier curtain is closed at night and opened in daytime; where insulation is needed, the lighter cloth hangs day and night. This looks a lot better than a roll-type window shade, or bamboo screen. Besides, with a roll-shade or bamboo, you must put it close to the window where it will interfere with the convection flow, that is cold shedding from the shut window.

Another nice alternative is a “cell shade” These are folded lengths of two or more stiff cloths that are formed into honeycombs ½” to 2” apart. This empty thickness provides the insulating power of the shade. Placed at the right distance from the window, the cell shade will add 3 or more to the overall R value of the window (1/12 ft / .024 BTU/ft. hr°F = 3.5 ft2hr°F/BTU). As with a bamboo screen, all this R value goes away if the shade is set at more than about 1” from the window or an interior shade. At a greater thickness that this, the free convection flow of cold air between the window and the shade dominates, and you get a puddle of cold air on the floor. 

I would suggest a cellular shade that opens from the bottom only and is translucent. This provides light and privacy; a shade that is too dark will be left open. Behind this, my home has double-pane windows (when I was single the window was covered by a layer of plastic too). The see-through shade provides insulation while allowing one to see out the window (or let light in) when the shade is drawn. You want to be able to see out; that’s the reason you had a window in the first place. Very thick, insulating curtains and blinds seem like a waste to me – they are enough thicker to add any significant R-value, they block the light, and if they end up far from the window, the shedding heat loss will more than offset any small advantage from the thick cloth.

One last window insulation option that’s worth mentioning is a reflective coating on the glass (an e-coating). This is not as bad an idea as you might think, even in a cold climate as in Detroit. A surprising amount of heat tends to escape your windows in the form of radiation. That is, the heat leaves by way of invisible (infra –red) light that passes unimpeded through the double pane glass. In hot climates even more heat comes in this way, and a coating is even more useful to preserve air conditioning power. Reflective plastic coats are cheap enough and readily available, though they can be hard to apply, and are not always attractive.

You can expect to reduce the window heat loss by a factor of 3 or more using these treatments, reducing the heat loss through the small window to $1.00 or so per month, far enough that the main heat loss is through the walls. At that point, it may be worth putting your efforts elsewhere. Window treatments can save you money, make a previously uninhabitable room pleasant, and can help preserve this fair planet of ours. Enjoy.

Updated, Feb 9, 2022, REB.