Tag Archives: antimatter

Our expanding, black hole universe

In a previous post I showed a classical derivation of the mass-to-size relationship for black -holes and gave evidence to suggest that our universe (all the galaxies together) constitute a single, large black hole. Everything is inside the black hole and nothing outside but empty space — We can tell this because you can see outside from inside a black hole — it’s only others, outside who can not see in (Finkelstein, Phys Rev. 1958). Not that there appear to be others outside the universe, but if they were, they would not be able to see us.

In several ways having a private, black hole universe is a gratifying thought. It provides privacy and a nice answer to an easily proved conundrum: that the universe is not infinitely big. The black hole universe that ends as the math requires, but not with a brick wall, as i the Hitchhiker’s guide (one of badly-laid brick). There are one or two problems with this nice tidy solution. One is that the universe appears to be expanding, and black holes are not supposed to expand. Further, the universe appears to be bigger than it should be, suggesting that it expanded faster than the speed of light at some point. its radius now appears to be 40-46 billion light years despite the universe appearing to have started as a point some 14 billion years ago. That these are deeply disturbing questions does not stop NASA and Nova from publishing the picture below for use by teachers. This picture makes little sense, but it’s found in Wikipedia and most, newer books.

Standard picture of the big bang theory. Expansions, but no contractions.

Standard picture of the big bang theory: A period of faster than light expansion (inflation) then light-speed, accelerating expansion. NASA, and Wikipedia.

We think the creation event occurred some 14 billion years ago because we observe that the majority of galaxies are expanding from us at a rate proportional to their distance from us. From this proportionality between the rate of motion and the distance from us, we conclude that we were all in one spot some 14 billion years ago. Unfortunately, some of the most distant galaxies are really dim — dimmer than they would be if they were only 14 billion light years away. The model “explains this” by a period of inflation, where the universe expanded faster than the speed of light. The current expansion then slowed, but is accelerating again; not slowing as would be expected if it were held back by gravity of the galaxies. Why hasn’t the speed of the galaxies slowed, and how does the faster-than-light part work? No one knows. Like Dr. Who’s Tardis, our universe is bigger on the inside than seems possible.

Einstein's preferred view of the black-hole universe is one that expands and contracts at some (large) frequency. It could explain why the universe is near-uniform.

Einstein’s oscillating universe: it expands and contracts at some (large) frequency. Oscillations would explain why the universe is near-uniform, but not why it’s so big or moving outward so fast.

Einstein’s preferred view was of an infinite space universe where the mass within expands and contracts. He joked that two things were infinite, the universe and stupidity… see my explanation... In theory, gravity could drive the regular contractions to an extent that would turn entropy backward. Einstein’s oscillating model would explain how the universe is reasonably stable and near-uniform in temperature, but it’s not clear how his universe could be bigger than 14 billion light years across, or how it could continue to expand as fast as it does. A new view, published this month suggests that there are two universes, one going forward in time the other backward. The backward in time part of the universe could be antimatter, or regular matter going anti entropy (that’s how I understand it — If it’s antimatter, we’d run into the it all the time). Random other ideas float through the physics literature: that we’re connected to other space through a black hole/worm hole, perhaps to many other universes by many worm holes in fractal chaos, see for example, Physics Reports, 1992.

The forward-in-time expansion part of the two universes model.

The forward-in-time expansion part of the two universes model. This drawing, like the first, is from NASA.

For all I know, there are these many black hole  tunnels to parallel universes. Perhaps the universal constant and all these black-hole tunnels are windows on quantum mechanics. At some point the logic of the universe seems as perverse as in the Hitchhiker guide.

Something I didn’t mention yet is the Higgs boson, the so-called God particle. As in the joke, it’s supposed to be responsible for mass. The idea is that all particles have mass only by interaction with these near-invisible Higgs particles. Strong interactions with the Higgs are what make these particles heavier, while weaker – interacting particles are perceived to have less gravity and inertia. But this seems to me to be the theory that Einstein’s relativity and the 1919 eclipse put to rest. There is no easy way for a particle model like this to explain relativistic warping of space-time. Without mass being able to warp space-time you’d see various degrees of light bending around the sun, and preferential gravity in the direction of our planet’s motion: things we do not see. We’re back in 1900, looking for some plausible explanation for the uniform speed of light and Lawrence contraction of space.As likely an explanation as any the_hitchhikers_guide_to_the_galaxy

Dr. r µ ßuxbaum. December 20, 2014. The  meaning of the universe could be 42 for all I know, or just pickles down the worm hole. No religion seems to accept the 14 billion year old universe, and for all I know the God of creation has a wicked sense of humor. Carry a towel and don’t think too much.

Do antimatter apples fall up?

by Dr. Robert E. Buxbaum,

The normal view of antimatter is that it’s just regular matter moving backwards in time. This view helps explain why antimatter has the same mass as regular matter, but has the opposite charge, spin, etc. An antiproton has the same mass as a proton because it is a proton. In our (forward) time-frame the anti-proton appears to be attracted by a positive plate and repelled by a negative one because, when you are going backward in time, attraction looks like repulsion.

In this view, the reason that antimatter particles annihilate when they come into contact with matter –sometimes– is that the annihilation is nothing more than the matter particle (or antimatter) switching direction in time. In our (forward) time-frame it looks like two particles met and both disappeared leaving nothing but photons (light). But in the time reversal view, shown in the figure below, there is only one normal matter particle. In the figure, this particle (solid line) comes from the left, and meets a photon, a wiggly line who’s arrow shows it traveling backwards in time. The normal proton then reverses in time, giving off a photon, another wiggly line. I’d alluded to this in my recent joke about an antimatter person at a bar, but there is also a famous poem.

proton-antiproton

This time reverse approach is best tested using entropy, the classical “arrow of time.” The best way to tell you can tell you are going forward in time is to drop an ice-cube into a hot cup of coffee and produce a warm cup of diluted coffee. This really only shows that you and the cup are moving in the same direction — both forward or both backward, something we’ll call forward. If you were moving in the opposite direction in time, e.g. you had a cup of anti-coffee that was moving backward in time relative to you, you could pull an anti -ice cube out of it, and produce a steaming cup of stronger anti-coffee.

We can not do the entropy test of time direction yet because it requires too much anti matter, but we can use another approach to test the time-reverse idea: gravity. You can make a very small drop of antimatter using only a few hundred atoms. If the antimatter drop is really going backwards in time, it should not fall on the floor and splatter, but should fly upward off the floor and coalesce. The Laboratory at CERN has just recently started producing enough atoms of anti-hydrogen to allow this test. So far the atoms are too hot but sometime in 2014 they expect to cool the atoms, some 300 atoms of anti hydrogen, into a drop or two. They will then see if the drop falls down or up in gravity. The temperature necessary for this study is about 1/100,000 of a degree K.

The anti-time view of antimatter is still somewhat controversial. For it to work, light must reside outside of time, or must move forward and backward in time with some ease. This makes some sense since light travels “at the speed of light,” and is thus outside of time. In the figure, the backwards moving photon would look like a forward on moving in the other direction (left). In a future post I hope to give instructions for building a simple, quantum time machine that uses the fact that light can move backwards in time to produce an event eraser — a device that erases light events in the present. It’s a somewhat useful device, if only for a science fair demonstration. Making one to work on matter would be much harder, and may be impossible if the CERN experiments don’t work out.

It becomes a little confusing how to deal with entropy in a completely anti-time world, and it’s somewhat hard to see why, in this view of time, there should be so little antimatter in the universe and so much matter: you’d expect equal amounts of both. As I have strong feelings for entropy, I’d posted a thought explanation for this some months ago imagining anti matter as normal forward-time matter, and posits the existence of an undiscovered particle that interacts with its magnetism to make matter more stable than antimatter. To see how it works, recall the brainteaser about a tribe that always speaks lies and another that always speaks truth. (I’m not the first to think of this explanation).

If the anti hydrogen drop at CERN is seen to fall upwards, but entropy still works in the positive direction as in my post (i.e. drops still splatter, and anti coffee cools like normal coffee), it will support a simple explanation for dark energy — the force that prevents the universe from collapsing. Dark energy could be seen to result from the antigravity of antimatter. There would have to be large collections of antimatter somewhere, perhaps anti-galaxies isolated from normal galaxies, that would push away the positive matter galaxies while moving forward in time and entropy. If the antigalaxies were close to normal galaxies they would annihilate at the edges, and we’d see lots of photons, like in the poem. Whatever they find at CERN, the future will be interesting. And if time travel turns out to be the norm, the past will be more interesting than it was.