Fractal power laws and radioactive waste decay

Here’s a fairly simple model for nuclear reactor decay heat versus time. It’s based on a fractal model I came up with for dealing with the statistics of crime, fires, etc. The start was to notice that radioactive waste is typically a mixture of isotopes with different decay times and different decay heats. I then came to suspect that there would be a general fractal relation, and that the fractal relation would hold through as the elements of the mixed waste decayed to more stable, less radioactive products. After looking a bit, if seems that the fractal time characteristic is time to the 1/4 power, that is

heat output = H° exp (-at1/4).

Here H° is the heat output rate at some time =0 and “a” is a characteristic of the waste. Different waste mixes will have different values of this decay characteristic.

If nuclear waste consisted of one isotope and one decay path, the number of atoms decaying per day would decrease exponentially with time to the power of 1. If there were only one daughter product produced, and it were non-radioactive, the heat output of a sample would also decay with time to the power of 1. Thus, Heat output would equal  H° exp (-at) and a plot of the log of the decay heat would be linear against linear time — you could plot it all conveniently on semi-log paper.

But nuclear waste generally consists of many radioactive components with different half lives, and these commpnents decay into other radioactive isotopes, all of whom have half-lives that vary by quite a lot. The result is that a semi-log plot is rarely helpful.  Some people therefore plot radioactivity on a log-log plot, typically including a curve for each major isotope and decay mode. I find these plots hardly useful. They are certainly impossible to extrapolate. What I’d like to propose instead is a fractal variation of the original semi-log plot: a  plot of the log of the heat rate against a fractal time. As shown below the use of time to the 1/4 power seems to be helpful. The plot is similar to a fractal decay model that I’d developed for crimes and fires a few weeks ago

Afterheat of fuel rods used to generate 20 kW/kg U; Top graph 35 MW-days/kg U; bottom graph 20 Mw-day /kg  U. Data from US NRC Regulatory Guide 3.54 - Spent Fuel Heat Generation in an Independent Spent Fuel Storage Installation, rev 1, 1999. http://www.nrc.gov/reading-rm/doc-collections/reg-guides/fuels-materials/rg/03-054/

After-heat of nuclear fuel rods used at 20 kW/kg U; Top graph 35 MW-days/kg U; bottom graph 20 Mw-day /kg U. Data from US NRC Regulatory Guide 3.54. A typical reactor has 200,000 kg of uranium.

A plausible justification for this fractal semi-log plot is to observe that the half-life of daughter isotopes relates to the parent isotopes. Unless I find that someone else has come up with this sort of plot or analysis before, I’ll call it after myself: a Buxbaum Mandelbrot plot –Why not?

Nuclear power is attractive because it is a lot more energy dense than any normal fuel. Still the graph at right illustrates the problem of radioactive waste. With nuclear, you generate about 35 MW-days of power per kg of uranium. This is enough to power an average US home for 8 years, but it produces 1 kg of radioactive waste. Even after 81 years the waste is generating about 1/2 W of decay heat. It should be easier to handle and store the 1 kg of spent uranium than to deal with the many tons of coal-smoke produced when 35 MW-days of electricity is made from coal, still, there is reason to worry about the decay heat.

I’ve made a similar plot of decay heat of a fusion reactor, see below. Fusion looks better in this regard. A fission-based nuclear reactor to power 1/2 of Detroit, would hold some 200,000 kg of uranium that would be replaced every 5 years. Even 81 years after removal, the after-heat would be about 100 kW, and that’s a lot.

Afterheat of a 4000 MWth Fusion Reactor, from UMAC III Report. Nb-1%Zr is a fairly common high-temerature engineering material of construction.

After-heat of a 4000 MWth Fusion Reactor built from niobium-1%zirconium; from UWMAC III Report. The after heat is far less than with normal uranium fission.

The plot of the after-heat of a similar power fusion reactor (right) shows a far greater slope, but the same time to the1/4 power dependence. The heat output drops from 1 MW at 3 weeks to only 100 W after 1 year and far less than 1 W after 81 years. Nuclear fusion is still a few years off, but the plot at left shows the advantages fairly clearly, I. think.

This plot was really designed to look at the statistics of crime, fires, and the need for servers / checkout people.

Dr. R.E. Buxbaum, January 2, 2014, edited Aug 30, 2022. *A final, final thought about theory from Yogi Berra: “In theory, it matches reality.”

1 thought on “Fractal power laws and radioactive waste decay

  1. lesley Anderson

    good idea. I’ve been thinking about fusion as an answer to the fractal-fission model. Fission being distortion and all. Peace, Lesley Anderson

    Reply

Leave a Reply