Category Archives: health

COVID-19 in Sweden vs the US; different approaches, near identical outcomes.

Today, Michigan and several other, Democrat-run states are in fairly broad COVID lockdown. The justification for this is that it is “THE science”, as if this were the only possible behavior if you believe the disease is deadly and contagious. The other fellows, the governors of Republican-run states are framed as deniers of the science. Strangely enough, although this disease is most -definitely contagious and deadly, killing 209,000 Americans so far, about 0.064% of the US this year, it is far from clear that a broad lockdown is the only way to stop the disease. Sweden avoided a general lockdown, leaving its schools and restaurants open, and has seen the disease follow an almost destructive path to that of the US, with a death rate that is currently slightly lower than ours. See the excess death plot below. Sweden seems to have avoided a second, summer spike.

Mortality is Sweden vs the US; Ignore the last 2-3 weeks, it takes time for this data to be compiled

It’s bad enough for “THE SCIENCE” when you see the anti-science, no-lockdown solution provide the same result, or close. Earlier in the summer I noted that Sweden and Michigan had near the same outcome, with Sweden slightly better. It’s now the case that Sweden is doing better than the US, and much better than the D-lead lockdown states. The highest six death rate states are all D-lead, lockdown states, NY, NJ, Mass, Conn, LA, and RI, and rates are double the US average in New York and New Jersey. Perhaps the solution is a general opening, like in Sweden, but before we rush to this, it’s probably worthwhile to do some re-thinking.

Deaths per week, under 18. Any excess deaths caused by COVID-19 are invisible here, lost in the scatter.

One thing that Swedes seem to have appreciated that the US experts didn’t is that the disease hardly affects those the under 18, and that’s basically the entire K-12 student body. Sweden therefore left their K-12 schools open, while we closed ours in the US beginning in early April. At right I’ve plotted the US deaths per week for under 18 for the last three years, that is from before COVID till now. There is no evidence of excess COVID-19 deaths for this group. If anything anything, the under 18 death death rate is lower after COVID than before. This resistance of this group helps explain part of why the Swedish approach didn’t cause increased deaths. Kids in Sweden got the disease, but didn’t die of it, and likely infected their parents. The Swedes didn’t bother trying to protect everyone, but only the most vulnerable, the old people. Sweden was not completely successful at this, but we were perhaps worse, despite the general lockdown.

The excess deaths US for the 65+ bracket plotted by week of the year for 2020 (blue), 2019 (grey) and 2018 (yellow). Nearly 200,000 of the excess deaths of 2020 — the vast majority — are in this age bracket.

But what about the middle-age people that the kids would have infected, the parents and teachers. For middle age people, those in the 18-65 range, it seems to make a difference how physically fit you are, and the Swedes tend to be fit. Obesity is a big co-morbidity for this disease, and Americans tend to be obese, with things getting worse during the lockdown. Swedes also wash their hands more than we do (or so is their reputation) and they go out in the sun. There is evidence that the sun helps, and vitamin D too. A stark way of seeing how much fitness helps, for even those over 18 is to consider that, of the 1.3 million men and women of the US military, there have been only 7 COVID deaths. That is a rate 1/100 of the national average for a population that is entirely over 18. This is not to say that the death rate is quite 5 per million, (7/ 1.3 million = 5 per million), but it’s probably below 50 per million. That is to say, at least 10% of the military was likely infected.

I’m inclined to agree with Dr. Fauchi that we are not yet at herd immunity, or even close, even in states like Michigan where death rates have leveled out. Only 20% of the state shows antibodies and real herd immunity would require 75% or so. Further supporting this, our death rates are 1/2 that of New Jersey. If we were at herd immunity, that could not have happened. It is possible though that we have a sort of pseudo herd immunity, where many people in the MI population have some level of T-cell immunity. T-cells do a good job eating disease (here’s a video) but they get overwhelmed when we are exposed to more than a low dose of virus. This dose-response is common in respiratory diseases, and Dr. Fauchi has related it to T-cell immunity, though he does not speak in these directions often.

Michigan death rates to September 2020 The disease seems to be over, though only about 20% of the state shows antibodies.

T-cells can cause someone to be immune to a few viral hits, but not immune to higher doses. Assuming that’s what’s going on in MI and MA, and NJ, I’m inclined to suggest we can open up these states a bit, according to the Swedish model. That is make careful efforts to clean public transport, and encourage hand washing and surface cleaning. That we prohibit large gatherings, and we take care isolate those over 65 and protect old age homes. In the US, virtually all the deaths were of people over 65, and about half were people over 85, with men being particularly vulnerable. A heterogeneous opening of this sort has been recommended by scientists as early as March.

There are three major problems with lockdowns that keep us from all virus particles. These lockdowns kill the economy, they leave us with lousy education, and they likely leave us as at-risk for the disease later on, when the lockdown is lifted. Instead a heterogeneous opening leaves the economy running and exposes us to some small exposure, at a level that our typical level of T-cell immunity may be able to handle. Over time we expect our T-cell immunity will rise and we’ll be able to take off our masks entirely. It’s a nice route to a cure that does not require a vaccine.

The above approach requires us to trust that people will do the right thing, and requires us to accept that each may do it in his/her own way. Some may not wear the mask all the time, but may chose exercising, or staying in the sun and taking vitamin D. Some may keep to masks, or focus on hand washing. Some may try unapproved drugs, like hydroxychloroquine. We will have to be able to accept that, and our experts will have to be able to step back from running everything. In China and Russia, the experts tried run every aspect of farm production, using only science methods. The result was famine. A similar thing happened in Ireland and got a potato famine. It’s good to have expert advice, but as far as making the actual decision in each location, I put a lot of weight on the choices of those who will bear the consequences.

Robert Buxbaum September 30, 2020. As a summary, I’m for opening schools, opening most states, with masks, and hand-sanitizer, at lower occupancy ( ~50%), limiting large gatherings, going to zoom as much as possible, and isolating the aged particularly the old age homes. I also recommend vitamin D and iodine hand sanitizer.

Hand washing and masks help, just not that much.

There are two main routes for catching flu. One is via your hands and your eyes and nose. Your hands pick up germs from the surfaces you touch, and when you touch your eyes or nose passages, the germs infect you. This was thought to be the main route for infection, and I still think it is. I’d been pushing iodine hand sanitizer for some time, the stuff used in hospitals, saying that that the alcohol hand sanitizer doesn’t work well, that it evaporates.

The other route, the one touted by the press these days is via direct cough droplets, breathing them in or getting them in your eyes. Masks and face shields are the preferred protection from this route, and the claim is that masks will stop 63% of the spread. The 63% number has an interesting history, it comes from this test with infected hamsters. Hamsters are 63% less likely to infect other hamsters when they wear a mask. Of course, the comparison has some weaknesses: hamsters don’t put their fingers in their noses, nor do they rub their eyes with their hands, and hamsters can be forced to keep the mask barrier all the time — read the study to see how.

A more realistic study, or more relevant to people, in my opinion showed a far lower effect for masks, about 20%. During the HiNi flu pandemic of 2009 a group of 1437 college students at a single university were divided into three randomized groups, see the original report here. Students at a few chosen residence halls were instructed to wash their hands regularly, use sanitizer, and wear masks. Students at other halls were either told to wear masks only, or told to go on as they pleased. This was the largest group, the control. They included students of the the largest residence hall on campus. The main results appear as the graph below, Figure 1 of the report. It shows a difference of 6% or 20%, depending on how you look at things, with the mask plus hand-health group, MPHH, doing the best.

After 6 weeks of monitoring, approximately 36% of the control group had gotten the flu or some collection of flu symptoms. The remaining 64% of the residents remained symptom free. This is he darkest line above.

Of the FM Only group, the medium line above, those instructed to wear face masks only. 30% of this group showed flu symptoms, with 70% remaining symptom free. Clearly masks do help with humans, but far less than what you’d expect from the news reports.

Sweden kept the primary schools open and allows people to wear masks and social distance at they see fit. The death toll to August 1 is identical to Michigan, or slightly bette Sweden’s top virologist recommends that the US follow suit. Open up and trust people.

The group that did best was FMHH, the group who both wore facemarks and used hand health, regular hand washing plus hand sanitizer. This group reported an average of 3.5 hours per day of mask use above the control group average. This is about as good or better than I see in Michigan. Adding the hand health provided an additional 1% improvement, or a 3% improvement, depending on how you look at these things. The press claims hand health is wasted effort, but I’m not so sure. I argue that the effect was significant, and that the hand sanitizer was bad. I argue that iodine hand wash would have done better at far less social cost.

I also note that doing nothing was not that much worse than mask use. This matches with the observation of COVID-19 in Sweden. With no enforced social distancing, Sweden did about the same as Michigan — slightly better, despite Michigan closing the schools and restaurants, and imposing some of the toughest requirements for social distancing and mask use.

Other things that affect how likely you are to get flu symptoms. I find these rustles more interesting than the main face-mask result.

There were other observations from the university study that i found isignificant. There are racial differences and social differences. The authors didn’t highlight these, but they are at least as large as the effect of mask use. Asians got the flu only 70% as often as others, while black students got it 8% more often. This matches what has been seen in the US with COVID-19. Also interesting, those with a recent flu shot got flu more often; those with physical activity 13% more often. Smokers got the flu less than non-smokers and women got it 22% more often than men. The last two are the reverse with COVID-19. I could speculate on the reasons, but clearly there is a lot going on.

Why did Asians do better than others? Perhaps Asians have had prior exposure to some similar virus, and are thus slightly immune, or perhaps they used the masks more, being more socially acceptable. Why were smokers protected? It’s likely that smoke kills germs; was that the cause. These are speculations, and as for the rest I don’t know.

I am not that bothered that the students probably didn’t wear their masks 100% of the time. Better would be better, but even with mask use 100% of the time, there are other known routes that are almost impossible to remove: clothing, food, touching your face. I still think there is a big advantage to iodine hand wash, and I suspect we would be better off opening up a bit too.

Robert Buxbaum August 7, 2020.

If nothing sticks to teflon, how do you stick teflon to a pan? PFAS.

When I was eight or nine year old, I went to the 1963-64 World’s Fair in New York. Among the attractions, in “the kitchen of the future”, I saw the first version of an amazing fry-pan that was coated with plastic. You could cook an egg on that plastic without any oil, and the egg didn’t stick. The plastic was called teflon, a DuPont innovation, whose molecule is shown below.

The molecular structure of Teflon. There is an interior carbon backbone that is completely enclosed with tightly bound fluorine atoms. The net result is a compound that does not bind readily to anything else.

Years later, I came to understand that Teflon’s high-temperature stability and non-stick properties derive from the carbon-fluorine bonds. These bonds are much stronger than the carbon-hydrogen bonds found in food, and most solid, organic things. Because of the strength of the carbon-fluorine bond, Teflon is resistant to oxidation, and to chemical interaction with other molecules, e.g. in food. It does not even interact with water, making it hydrophobic and non-wetting on metals. The carbon-carbon bonds in the middle remained high temperature stable, in part because they were completely shielded by the fluorine atoms.

This is a PFAS. The left side is just like teflon, and very hydrophobic. The right side is hydrophilic and highly bonding to pans, and many other things like water or cotton.

But as remarkable as teflon’s non-stick properties are, perhaps the most amazing thing was that it somehow sticks to the pan. For the first generation pans I saw, it didn’t stick very well. Still, the DuPont engineers had found a way to stick non-stick Teflon to a metal for long enough to cook many meals. If they had not found this trick, teflon would not have the majority of its value, but how did they do it? It turns out they used a thin coating of a di-functional compound called PFAS, a a polyfluoro sulphonyl (or polyfluoroalkyl) substance. The molecular structure of a common PFAS, is shown above.

Each molecule of PFAS has one end that’s teflon-like and another end that’s different. The non-Teflon end, in this case a sulfonyl group, is chosen to be both high temperature stable and sticky to metal oxides. The sulphonyl group above is highly polar, and acidic. Acidic will bind to bases, like metal oxides. The surface of the metal pan is prepared by applying a thin layer of oxide or amidine, making it a polar base. The PFAS is then applied, then Teflon. The Teflon-end of the PFAS is bound to teflon by the hydrophobicity of everything else rejecting it.

There are many other uses for PFAS. For example, PFAS is applied to clothing to make it wrinkle free and stain resistant. It can also be used as a super soap, making uncommonly stable foams and bubbles. It is also used in fire-fighting and plane de-icing. Finally, PFAS is the main component of Nafion, the most common membrane for PEM fuel cells. (I can think of yet other applications..) There is just one small problem with PFAS, though. Like teflon, this molecule is uncommonly stable. It doesn’t readily decompose in nature. That would be a small problem if we were sure that PFAS was safe. As it happens it seems safe, but we’re not totally sure.

The safety of PFAS was studied extensively before PFAS-teflon pans was put on the market, but the methodology has been questioned. Large doses of PFAS were fed to test animals, and their health observed. Since the test animals showed no real signs of ill-health though some showed a slight liver enlargement, PFAS was accepted as safe for humans at a lower exposure dose. PFAS was approved for use on pans and allowed to be dumped under conditions where humans would be exposed to 1/1000 of that used on the animals. The assumption was that there would be little or no health hazard at these low exposure levels.

But low risk is not no risk, and today one can sue for even the hint of an effect though use of a class action suit. That is, lawyers sue on behalf of all the people who might have been damaged. My city was sued successfully this way for complicity in sewage over-flows. Of course, since the citizens being paid by the suit are the same ones who have to pay for the damage, only the lawyers benefit. Still, the law is the law, and at least for some judges, putting anyone at risk is enough evidence of willful disregard to hand down a stinging judgement against the evil doer. Judges have begun awarding large claims for PFAS too. While no individual can get the claim more than a tiny amount of money, the lawyers can do very well.

There is no new evidence that PFAS is dangerous, but none is needed if you can get yourself the right judge. In this regard, an industry of judicial tourism has sprung up, where class-action lawyers travel to districts where the judges are favorable. For Teflon suits, the bust hunting grounds are in New York, New Hampshire, and California, and the worst are blood-red states like Wyoming and Utah. Just as different judges promote different precedents, different states allow vastly different PFAS concentrations in the water. A common standard, one used by Michigan, is 70 ppt, 1 billion times stricter than the amounts tested on animals. This is roughly 500 times stricter than the acceptable concentratios for lead, a known poison. The standard in New York is 7 times stricter than Michigan, 10 ppt. The standard in North Carolina is 140,000 ppt, in in several states there is no legal limit to PFAS dumping. There is no scientific logic to all of this, and skeptical view is that the states that rule more strictly for PFAS than lead do so make money for lawyers. Lead is everyone in the natural environment, so you can’t sue as easily for lead. PFAS is a man-made intruder, though, and a strict standard helps lawyers sue. You can find a summary of state by state regulations here.

Any guideline stricter than about 1000 ppt, presents a challenge to the water commissioner who must measure it and enforce the law. There are tricks, though. You can use the surfactant quality of PFAS to concentrate it by a factor of 100 or more. To do this, you take a sample of river water and create bubbles. Any bubbles that form will be highly concentrated in PFAS. Once PFAS can be identified this way, and the concentrators estimated, the polluters can be held liable. Whether we benefit from the strict rulings is another story. If I were making the law for Michigan, I’d probably choose a limit about 1 ppb, but I’m not making the law. The law, as written, may be an idiot, as Bumble said, but the Law is the Law.

In terms of Michigan fishing, while some rivers have PFAS concentrators above the MI-legal limit, they are generally not far over the line. I would trust the fish in the Huron River, even west of Wixom road but I’d suggest you avoid any foam you find floating there. The PFAS content of foam will be much higher than that of the water in general.

Robert E. Buxbaum, June 30, 2020, edited July 8, 2020. There are seven compounds known as PFAS’s: perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexanesulfonic acid (PFHxS), perfluoroheptanoic acid (PFHpA), and perfluorobutanesulfonic acid (PFBS).

Brazilian scientists speak out for hydroxychloroquine

Brazil has decided to go its own route in response to the Corona virus pandemic. They’re using minimal social distancing with a heavy reliance on hydroxychloroquine (HCQ), a cheap drug that they claim is effective (as has our president). Brazil has been widely criticized for this, despite so far having lower death rate per million than the US, Canada, or most of Europe. In an open letter, copied in part below, 25 Brazilian scientists speak out against the politicalization of science, and in favor of their approach to COVID-19. The full letter (here). The whole letter is very worth reading, IMHO, but especially worthwhile is their section on hydroxychloroquine (HCQ), copied below.

….. Numerous countries such as the USA, Spain, France, Italy, India, Israel, Russia, Costa Rica and Senegal use the drug (HCQ) to fight covid-19, whereas other countries refrain from using HCQ as one of the strategies to contain the pandemic, betting on other controversial tactics.

Who then speaks here in the name of “science”? Which group has a monopoly on reason and its exclusive authorization to be the spokesperson of “science”? Where is such authorization found?One can choose an opinion, and base his strategy on it, this is fine, but no one should commit the sacrilege of protecting his decision risking to tarnish with it the “sacred mantle of science”.

Outraged, every day I hear mayors and governors saying at the top of their lungs that they “have followed science”. Presidents of councils and some of their advisers, and of academies and deans in their offices write letters on behalf of their entire community, as if they reflect everyone’s consensual position. Nothing could be more false.Have they followed science? Not at all! They have followed the science wing which they like, and the scientists who they chose to place around them. They ignore the other wing of science, since there are also hundreds of scientists and articles that oppose their positions and measures.

Worse, scientists are not angels. Scientists are people, and people have likes and dislikes, passions and political party preferences. Or wouldn’t they? There are many scientists, therefore, who do good without looking at whom, I know and admire many of them. But there are also pseudoscientists who use science to defend their opinion, their own pocket, or their passion. Scientists have worked and still work hard and detached to contribute to the good of humanity, many of whom are now in their laboratories, risking their lives to develop new methods of detecting coronavirus, drugs and vaccines, when they could stay “safe at home”. But, to illustrate my point, I know scientists who have published articles, some even in major journals such as “Science” or “Nature”, with data they have manufactured “during the night”; others who have removed points from their curves, or used other similar strategies. Many scientists were at Hitler’s side, weren’t they? Did they act in the name of “science”? Others have developed atom bombs. Others still develop chemical and biological weapons and illicit drugs, by design.

The Manaus’ study with chloroquine (CQ) performed here in Brazil and published in the Journal of the American Medical Association (JAMA) [1], is emblematic to this discussion of “science”. Scientists there used, the manuscript reveals, lethal doses in debilitated patients, many in severe conditions and with comorbidities. The profiles of the groups do not seem to have been “randomized”, since a clear “preference” in the HIGH DOSE group for risk factors is noted. Chloroquine, which is more toxic than HCQ, was used, and it seems that they even made “childish mistakes” in simple stoichiometric calculations, doubling the dosage with the error. I’m incapable of judging intentions, but justice will do it. The former Brazilian Health Minister Luiz Henrique Mandetta quoted this study, supported it, and based on it, categorically stated: “I do not approve HCQ because I am based on ‘science, science, science’!”.

Another study published by Chinese researchers in the British Medical Journal (BMJ) and which is still persistently used against HCQ was also at least revolting [2]. In it, the authors declared: “we administer 1,200 mg for 3 days, followed by 800 mg for 12 to 21 days, in patients with moderate to severe symptoms”. In other words, they gave a huge dosage of the drug that could reach the absurdity of 20 grams in the end, and it given was too late to patients (HCQ should be administered in the first symptoms or even earlier). And even worse, overdosing on HCQ or any other drug for severe cases is poisonous. What do you think, was it good science? The recommended dosage in Brazil, since May 20th, 2020, by the new Ministry of Health, for mild symptoms is 2 times 400 mg in the first day (every 12 hours) and 400 mg for 5 days for a total of 2.8 grams.

In other published studies, also in these internationally renowned journals such as The New England Journal of Medicine, JAMA and BMJ [3-5], once again, “problems” are clearly noted, since or the patients were randomized in irregular ways, placing older, more susceptible or most severe and hypoxemic patients in the higher (lethal) dose groups, or more men (almost 3 times more deadly by covid than women), or more black people (in the USA, black people have displayed higher mortality) and more smokers, and where most of the deaths occurred in the first days of the studies (signs that were deaths of critically ill patients, who at this stage would be more “intoxicated” than “treated” with HCQ), or they administered HCQ isolated, when it is known that it is necessary to associate HCQ at least with azithromycin. One of these studies [5] administered HCQ only on the sixteenth day of symptoms (for really early treatment, HCQ administration should be started up to fifth day), in other words, at the end of the disease, when the drug can do little good or nothing to the patient.

These studies indicate that some scientists either forgot how “science” is done or that there is a huge effort to disprove, whatever it takes, that HCQ works. How can someone or even Councils and Academies of Medicine cite such studies as the “science” of their decisions? How can that be?

On the contrary, the study published – and today with more than 3 thousand patients tested – and carried out by Dr. Didier Raoult in France [6], using the correct dosage and at the right time, with a very low mortality rate (0.4%), and the Prevent Senior’s clinical experience in Brazil – also quite encouraging – are disqualified with very “futile” arguments such as: “Didier Raoult is a controversial and unworthy researcher”, “At Prevent Senior Clinic they were not sure of the diagnosis” (but none of the hospitalized patients with clear COVID symptoms died), “Placebo effect” (what a supernatural power of inducing our mind that reduces mortality from 40% to zero, I want this placebo!), “Study performed by a health plan company” (I do not doubt that this people indeed want to save lives, because the patients were their customers who pay their bills), and similar ephemeral arguments.

The Brazilian scents who signed the letter. Read the whole letter here.

I admire the spunk of these fellows going agains the doctors, WHO. Beyond being a critique of bad research on a particular drug, it is a defense of science. Science is a discussion, a striving for truth. It is not supposed to demand blind allegiance to a few politically appointed experts. They’ve convinced me that the tests sponsored by the world health organization seem designed to show failure, and reminded me that there is rarely a one-size-fits-all for problems and all times.

I also find striking the highly critical response of my local newspapers and TV reporters. While they both like to highlight efforts by South America as they try entering the first world, with help from Bill gates and leftist politicians, they have been uniformly condemned Brazil for its non-left approach and now for use of HCQ. They want Sous Americans to think, but only if their conclusions are no different from those of their favorite, liberal thinkers.

Robert Buxbaum, May 28, 2020. Check out my notes on how to do science right. And by the way, you might want to use iodine hand wash to minimize your chance of getting or spreading COVID and other diseases.

Iodine is far better than soap or alcohol sanitizer.

I’m a fan of iodine both as a hand sanitizer, and as a sanitizer for surfaces. II’ve made gallons of the stuff for my own use and to give away. Perhaps I’ll come to sell it too. Unlike soap washing or alcohol sanitizer, iodine stays on your hands for hours after you use it. Alcohol evaporates in a few seconds, and soap washes off. The result is that iodine retains killing power after you use it. The iodine that I make and use is 0.1%, a concentration that is non-toxic to humans but very toxic to viruses. Here is an article about the effectiveness of iodine against viruses and bacteria Iodine works both on external surfaces, and internally, e.g. when used as a mouthwash. Iodine kills germs in all environments, and has been used for this purpose for a century.

With normal soap or sanitizer it’s almost impossible to keep from reinfecting your hands almost as soon as you wash. I’ve embedded a video showing why that is. It should play below, but here’s the link to the video on youtube, just in case it does not.

The problem with washing your hands after you receive an item, like food, is that you’re likely to infect the sink faucet and the door knob, and the place where you set the food. Even after you wash, you’re likely to re-infect yourself almost immediately and then infect the towel. Because iodine lasts on your hands for hours, killing germs, you have a good chance of not infecting yourself. If you live locally, come by for a free bottle of sanitizer.

For those who’d like more clinical data to back up the effectiveness of iodine, here’s a link to a study, I also made a video on the chemistry of iodine relevant to why it kills germs. You might find it interesting. It appears below, but if it does not play right, Here’s a link.

The video shows two possible virus fighting interactions, including my own version of the clock reaction. The first of these is the iodine starch interaction, where iodine bonds forms an I<sub>3</sub><sup>-</sup> complex, I then show that vitamin C unbinds the iodine, somewhat, by reducing the iodine to iodide, I<sup>-</sup>. I then add hydrogen peroxide to deoxidize the iodine, remove an electron. The interaction of vitamin C and hydrogen peroxide creates my version of the clock reaction. Fun stuff.

The actual virus fighting mechanism of iodine is not known, though the data we have suggests the mechanism is a binding with the fatty starches of the viral shell, the oleo-polysaccharides. Backing this mechanism is the observation that the shape of the virus does not change when attacked by iodine, and that the iodine is somewhat removable, as in the video. It is also possible that iodine works by direct oxidation, as does hydrogen peroxide or chlorine. Finally, I’ve seen a paper showing that internal iodine, more properly called iodide works too. My best guess about how that would work is that the iodide is oxidized to iodine once it is in the body.

There is one more item that is called iodine, that one might confuse with the “metallic” iodine solutions that I made, or that are sold as a tincture. These are the iodine compounds used for CAT-scan contrast. These are not iodine itself, but complex try-iodo-benzine compounds. Perhaps the simplest of these is diatrizoate. Many people are allergic to this, particularly those who are allergic to sea food. If you are allergic to this dye, that does not mean that you will be allergic to a simple iodine solution as made below.

The solution I made is essentially 0.1% iodine in water, a concentration that has been shown to be particularly effective. I add potassium iodide, plus isopropyl alcohol, 1%, 1% glycerine and 0.5% mild soap. The glycerine and soap are there to maintain the pH and to make the mix easier on your hands when it dries. I apply 5-10 ml to my hands and let the liquid dry in place.

Robert Buxbaum April 27, 2020; I’m running for water commissioner again. Wishing you a safe and happy lockdown,

The main route of lead poisoning is from the soil by way of food, dust, and smoke.

While several towns have had problems with lead in their water, the main route for lead entering the bloodstream seems to be from the soil. The lead content in the water can be controlled by chemical means that I reviewed recently. Lead in the soil can not be controlled. The average concentration of lead in US water is less than 1 ppb, with 15 ppb as the legal limit. According to the US geological survey, of lead in the soil, 2014., the average concentration of lead in US soil is about 20 ppm. That’s more than 1000 times the legal limit for drinking water, and more than 20,000 times the typical water concentration. Lead is associated with a variety of health problems, including development problems in children, and 20 ppm is certainly a dangerous level. Here are the symtoms of lead poisoning.

Several areas have deadly concentrations of lead and other heavy metals. Central Colorado, Kansas, Washington, and Nevada is particularly indicated. These areas are associated with mining towns with names like Leadville, Telluride, Silverton, Radium, or Galena. If you live in an areas of high lead, you should probably not grow a vegetable garden, nor by produce at the local farmer’s market. Even outside of these towns, it’s a good idea to wash your vegetables to avoid eating the dirt attached. There are hardly any areas of the US where the dust contains less than 1000 times the lead level allowed for water.

Lead content of US soils, from the US geological survey of soils, 2014. Michigan doesn’t look half bad.

Breathing the dust near high-lead towns is a problem too. The soil near Telluride Colorado contains 1010 mg/kg lead, or 0.1%. On a dust-blown day in the area, you could breath several grams of the dust, each containing 1 mg of lead. That’s far more lead than you’d get from 1000 kg of water (1000 liters). Tests of blood lead levels, show they rise significantly in the summer, and drop in the winter. The likely cause is dust: There is more dust in the summer.

Recalled brand of curry powder associated with recent poisoning.

Produce is another route for lead entering the bloodstream. Michigan produce is relatively safe, as the soil contains only about 15 ppm, and levels in produce are generally far smaller than in the soil. Ohio soils contains about three times as much lead, and I’d expect the produce to similarly contain 3 times more lead. That should still be safe if you wash your food before eating. When buying from high-lead states, like Colorado and Washington, you might want to avoid produce that concentrates heavy metals. According Michigan State University’s outreach program, those are leafy and root vegetables including mustard, carrots, radishes, potatoes, lettuce, spices, and collard. Fruits do not concentrate metals, and you should be able to buy them anywhere. (I’d still avoid Leadville, Telluride, Radium, etc.). Spices tend to be particularly bad routes for heavy metal poisoning. Spices imported from India and Soviet Georgia have been observed to have as much as 1-2% lead and heavy metal content; saffron, curry and fenugreek among the worst. A recent outbreak of lead poisoning in Oakland county, MI in 2018 was associated with the brand of curry powder shown at left. It was imported from India.

Marijuana tends to be grown in metal polluted soil because it tolerates soil that is too polluted fro most other produce. The marijuana plant concentrates the lead into the leaves and buds, and smoking sends it to the lungs. While tobacco smoking is bad, tobacco leaves are washed and the tobacco products are regulated and tested for lead and other heavy metals. If you choose to smoke cigarettes, I’d suggest you chose brands that are low in lead. Here is an article comparing the lead levels of various brands. . Better yet, I’s suggest that you vape. There are several advantages of vaping relative to smoking the leaf directly. One of them is that the lead is removed in the process of making concentrate.

Some states test the lead content of marijuana; Michigans and Colorado do not, and even in products that are tested, there have been scandals that the labs under-report metal levels to help keep tainted products on the shelves. There is also a sense that the high cost encourages importers to add lead dust deliberately to increase the apparent density. I would encourage the customer to buy vape or tested products, only.

Here is a little song, “pollution” from Tom Lehrer, to lighten the mood.

Robert Buxbaum, November 24, 2019. I ran for water commissioner in 2016 and lost. I may run again in 2020. Who knows, this time I may win.

The chemistry of lead in drinking water

Our county, like many in the US and Canada, is served by thousands of miles of lead pipes. Some of these are the property of the government, others sit beneath our homes and are the property of the home-owner. These pipes are usually safe, but sometimes poison us. There is also problem of lead-tin solder. It was used universally to connect iron and copper pipes until it was outlawed in 1986. After years of sitting quietly, this lead caused a poisoning crisis in DC in 2004, and in Flint in 2015-16. Last month my town, Oak Park, registered dangerous lead levels in the drinking water. In an attempt to help, please find the following summary of the relevant lead chemistry. Maybe people in my town, or in other towns, will find some clue here to what’s going on, and what they can do to fix it.

lead pipes showing the three oxides: brown, yellow, and red, PbO2, PbO, and Pb2O3.

Left to itself, lead and solder pipe could be safe; lead is not soluble in clean water. But, if the water becomes corrosive, as happens every now and again, the lead becomes oxidized to one of several compounds that are soluble. These oxides are the main route of poisoning; they can present serious health issues including slow development, joint and muscle pain, memory issues, vomiting, and death. The legal limit for lead content in US drinking water is 15 ppb, a level that is far below that associated with any of the above. The solubility of PbO, lead II oxide, is more than 1000 times this limit 0.017 g/L, or 17,000 ppb. At this concentration serious health issues will show up.

PbO is the yellow lead oxide shown in the center of the figure above, right; the other pipes show other oxides, that are less-soluble, and thus less dangerous. Yellow lead oxide and red lead oxides on the right were used as paint colors until well into the 20th century. Red lead oxide is fairly neutral, but yellow PbO is a base; its solubility is strongly dependent on the PH of the water. In neutral water, its solution can be described by the following reaction.

PbO + H2O(l) –> Pb2+(aq) + 2 OH(aq).

In high pH water (basic water), there are many OH(aq) ions, and the solubility is lower. In low pH, acidic water the solubility is even higher. For every 1 point of lower pH the lowubility increases by a factor of 10, for every 1 point of higher pH, it decreases by a factor of ten. In most of our county, the water is slightly basic, about pH 8. It also helps that our water contains carbonate. Yellow lead forms basic lead carbonate, 2PbCO3·Pb(OH)2, the white lead that was used in paint and cosmetics. Its solubliity is lower than that of PbO, 110 ppb, in pure water, or within legal limit in water of pH 8. If you eat white lead, though, it reacts with stomach acid, pH 2, and becomes quite soluble and deadly. Remember, each number here is a factor of ten.

A main reason lead levels a very low today are essentially zero, even in homes with lead solder or pipe, involves involves the interaction with hypochlorite. Most water systems add hypochlorite to kill bacteria (germs) in the water. A side benefit is significant removal of lead ion, Pb2+(aq).

Pb2+(aq) + 2 ClO(aq) –> Pb(ClO)2(s). 

Any dissolved lead reacts with some hypochlorite ion reacts to form insoluble lead hypochlorite. Lead hypochlorite can slowly convert to Lead IV oxide — the brown pyrophilic form of lead shown on the left pipe in the figure above. This oxide is insoluble. Alkaline waters favor this reaction, decreasing solubility, but unlike with PbO, highly alkaline waters provide no significant advantage.

PbClO+(aq) + H2O(l) –> PbO2(s) + 2 H+(aq) + Cl(aq)

Lead IV oxide, PbO2 was used in old-fashioned matches; it reacts violently with phosphorus or sulfur. People were sometimes poisoned by sucking on these matches. In the stomach, or the presence of acidic drinking water, PbO2 is decomposed forming soluble PbO:

PbO2(s) +2 H+(aq) + 2 e –> PbO(s) + H2O(l).

You may wonder at the presence of the two electrons in the reaction above. A common source in water systems is the oxidation of sulphite:

SO3-2(aq)–> SO4-2(aq) + 2 e.

The presence of sulphite in the water means that hypochlorite is removed.

ClO(aq) + 2 H+(aq) + 2 e —> Cl(aq) + H2O(l).

Removal of hypochlorite can present a serious danger, in part because the PbO2(s) slowly reverts to PbO and becomes soluble, but mostly because bacteria start multiplying. In the Flint crisis of 2016, and in a previous crisis in Washington DC, the main problem, in my opinion was a lack of hypochlorite addition. The lead crisis was preceded by an uptick in legionnaires disease; It killed 12 people in Flint in 2014 and 2015, and 87 were sickened, all before the lead crisis. Eventually, it was the rise of legionaries disease that alerted water officials in Virginia that there was something seriously wrong in Flint. Most folks were unaware because Flint water inspectors seem to have been fudging the lead numbers to make things look better.

Most US systems add phosphate to remove lead from the water. Flint water folks could have stopped the lead crisis, but not the legionnaires, by adding more phosphate. Lead phosphate solubility is 14 ppb at 20°C, and my suspicion is that this is the reason that the legal limit in the US is 15 ppb. Regulators chose 15 ppb, I suspect, not for health reasons, but because the target could be met easily through the addition of phosphate. Some water systems in the US and Canada disinfect with chloramine, not hypochlorite, and these systems rely entirely on phosphate to keep lead levels down. Excess phosphate is used in Canada to lower lead levels below 10 ppb. It works better on systems with hypochlorite.

Chloramine is formed by reacting hypochlorite with ammonia. It may be safer than hypochlorite in terms of chlorite reaction products, a real problem when the water source is polluted. But chloramine is not safe. It sickened 72 soldiers, 36 male and 36 female in 1998. They’d used ammonia and bleach for a “cleaning party” on successive days. Here’s a report and first aid instructions for the poisoning. That switching to chloramine can expose people to lead is called “the chloramine catch”.

Unlike PbO, PbO2 is a weak acid. PbO2 and PbO can react to form red lead, PbO•PbO2(s), the red stuff on the pipe at right in the picture above. Red lead can react with rust to form iron plumbable, an insoluble corrosion resister. A simple version is:

PbO•PbO2(s) + Fe2O3(s) —> 2FePbO3(s).

This reaction is the basis of red-lead, anti-rust compounds. Iron plumbable is considered to be completely insoluble in water, but like PbO it is soluble in acid. Bottom line, slightly basic water is good, as are hypochlorite in moderation, and phosphate.

Robert Buxbaum, November 18, 2019. I ran for water commissioner, and might run again. Even without being water commissioner, I’ll be happy to lend my expertise, for free, to any Michigan town or county that is not too far from my home.

Vitamin A and E, killer supplements; B, C, and D are meh.

It’s often assumed that vitamins and minerals are good for you, so good for you that people buy all sorts of supplements providing more than the normal does in hopes of curing disease. Extra doses are a mistake unless you really have a mis-balanced diet. I know of no material that is good in small does that is not toxic in large doses. This has been shown to be so for water, exercise, weight loss, and it’s true for vitamins, too. That’s why there is an RDA (a Recommended Daily Allowance). 

Lets begin with Vitamin A. That’s beta carotene and its relatives, a vitamin found in green and orange fruits and vegetables. In small doses it’s good. It prevents night blindness, and is an anti-oxidant. It was hoped that Vitamin A would turn out to cure cancer too. It didn’t. In fact, it seems to make cancer worse. A study was preformed with 1029 men and women chosen random from a pool that was considered high risk for cancer: smokers, former smokers, and people exposed to asbestos. They were given either15 mg of beta carotene and 25,000 IU of vitamin A (5 times the RDA) or a placebo. Those taking the placebo did better than those taking the vitamin A. The results were presented in the New England Journal of Medicine, read it here, with some key findings summarized in the graph below.

Comparison of cumulative mortality and cardiovascular disease between those receiving Vitamin A (5 times RDA) and those receiving a placebo. From Omenn et. al, Clearly, this much vitamin A does more harm than good.

The main causes of death were, as typical, cardiovascular disease and cancer. As the graph shows, the rates of death were higher among people getting the Vitamin A than among those getting nothing, the placebo. Why that is so is not totally clear, but I have a theory that I presented in a paper at Michigan state. The theory is that your body uses oxidation to fight cancer. The theory might be right, or wrong, but what is always noticed is that too much of a good thing is never a good thing. The excess deaths from vitamin A were so significant that the study had to be cancelled after 5 1/2 years. There was no responsible way to continue. 

Vitamin E is another popular vitamin, an anti-oxidant, proposed to cure cancer. As with the vitamin A study, a large number of people who were at high risk  were selected and given either a large dose  of vitamin or a placebo. In this case, 35,000 men over 50 years old were given either vitamin E (400 to 660 IU, about 20 times the RDA) and/or selenium or a placebo. Selenium was added to the test because, while it isn’t an antioxidant, it is associated with elevated levels of an anti-oxidant enzyme. The hope was that these supplements would prevent cancer and perhaps ward off Alzheimer’s too. The full results are presented here, and the key data is summarized in the figure below. As with vitamin A, it turns out that high doses of vitamin E did more harm than good. It dramatically increased the rate of cancer and promoted some other problems too, including diabetes.  This study had to be cut short, to only 7 years, because  of the health damage observed. The long term effects were tracked for another two years; the negative effects are seen to level out, but there is still significant excess mortality among the vitamin takers. 

Cumulative incidence of prostate cancer with supplements of selenium and/or vitamin E compared to placebo.

Cumulative incidence of prostate cancer with supplements of selenium and/or vitamin E compared to placebo.

Selenium did not show any harmful or particularly beneficial effects in these tests, by the way, and it may have reduced the deadliness of the Vitamin A.. 

My theory, that the body fights cancer and other disease by oxidation, by rusting it away, would explain why too much antioxidant will kill you. It laves you defenseless against disease As for why selenium didn’t cause excess deaths, perhaps there are other mechanisms in play when the body sees excess selenium when already pumped with other anti oxidant. We studied antioxidant health foods (on rats) at Michigan State and found the same negative effects. The above studies are among the few done with humans. Meanwhile, as I’ve noted, small doses of radiation seem to do some good, as do small doses of chocolate, alcohol, and caffeine. The key words here are “small doses.” Alcoholics do die young. Exercise helps too, but only in moderation, and since bicycle helmets discourage bicycling, the net result of bicycle helmet laws may be to decrease life-span

What about vitamins B, C, and D? In normal doses, they’re OK, but as with vitamin A and E you start to see medical problems as soon as you start taking more– about  12 times the RDA. Large does of vitamin B are sometimes recommended by ‘health experts’ for headaches and sleeplessness. Instead they are known to produce skin problems, headaches and memory problems; fatigue, numbness, bowel problems, sensitivity to light, and in yet-larger doses, twitching nerves. That’s not as bad as cancer, but it’s enough that you might want to take something else for headaches and sleeplessness. Large does of Vitamin C and D are not known to provide any health benefits, but result in depression, stomach problems, bowel problems, frequent urination, and kidney stones. Vitamin C degrades to uric acid and oxalic acid, key components of kidney stones. Vitamin D produces kidney stones too, in this case by increasing calcium uptake and excretion. A recent report on vitamin D from the Mayo clinic is titled: Vitamin D, not as toxic as first thought. (see it here). The danger level is 12 times of the RDA, but many pills contain that much, or more. And some put the mega does in a form, like gummy vitamins” that is just asking to be abused by a child. The pills positively scream, “Take too many of me and be super healthy.”

It strikes me that the stomach, bowel, and skin problems that result from excess vitamins are just the problems that supplement sellers claim to cure: headaches, tiredness, problems of the nerves, stomach, and skin.  I’d suggest not taking vitamins in excess of the RDA — especially if you have skin, stomach or nerve problems. For stomach problems; try some peniiiain cheese. If you have a headache, try an aspirin or an advil. 

In case you should want to know what I do for myself, every other day or so, I take 1/2 of a multivitamin, a “One-A-Day Men’s Health Formula.” This 1/2 pill provides 35% of the RDA of Vitamin A, 37% of the RDA of Vitamin E, and 78% of the RDA of selenium, etc. I figure these are good amounts and that I’ll get the rest of my vitamins and minerals from food. I don’t take any other herbs, oils, or spices, either, but do take a baby aspirin daily for my heart. 

Robert Buxbaum, May 23, 2019. I was responsible for the statistics on several health studies while at MichiganState University (the test subjects were rats), and I did work on nerves, and on hydrogen in metals, and nuclear stuff.  I’ve written about statistics too, like here, talking about abnormal distributions. They’re common in health studies. If you don’t do this analysis, it will mess up the validity of your ANOVA tests. That said,  here’s how you do an anova test

The Japanese diet, a recipe for stomach cancer.

Japan has the highest life expectancy in the world, an average about 84.1 years, compared to 78.6 years for the US. That difference is used to suggest that the Japanese diet must be far healthier than the American. We should all drink green tea and eat such: rice with seaweed and raw or smoked fish. Let me begin by saying that correlation does not imply causation, and go further to say that, to the extent that correlation suggests causation, the Japanese diet seems worse. It seems to me that the quantity of food (and some other things) are responsible for Americans have a shorter life-span than Japanese, the quality our diet does not appear to be the problem. That is, Americans eat too much, but what we eat is actually healthier than what the Japanese eat.

Top 15 causes of death in Japan and the US in order of Japanese relevance.

Top 15 causes of death in Japan and the US in order of Japanese relevance.

Let’s look at top 15 causes of deaths in Japan and the US in order of significance for Japan (2016). The top cause of disease death is the same for Japan and the US: it’s heart disease. Per-capita, 14.5% of Japanese people die of this, and 20.9% of Americans. I suspect the reason that we have more heart disease is that we are more overweight, but the difference is not by that much currently. The Japanese are getting fatter. Similarly, we exceed the Japanese in lung cancer deaths (not by that much) a hold-over of smoking, and by liver disease (not by that much either), a holdover of drinking, I suspect.

Japan exceeds the US in Stroke death (emotional pressure?) and suicide (emotional pressure?) and influenza deaths (climate-related?). The emotional pressure is not something we’d want to emulate. The Japanese work long hours, and face enormous social pressure to look prosperous, even when they are not. There is a male-female imbalance in Japan that is a likely part of the emotional pressure. There is a similar imbalance in China, and a worse one in Qatar. I would expect to see social problems in both in the near future. So far, the Japanese deal with this by alcoholism, something that shows up as liver cancer and cirrhosis. I expect the same in China and Qatar, but have little direct data.

Returning to diet, Japan has more far more stomach cancer deaths than the US; it’s a margin of nine to one. It’s the number 5 killer in Japan, taking 5.08% of Japanese, but only 0.57% of Americans. I suspect the difference is the Japanese love of smoked and raw fish. Other diet-related diseases tell the same story. Japan has double our rate of Colon-rectal cancers, and higher rates of kidney disease, pancreatic cancer, and liver cancer. The conclusion that I draw is that green tea and sushi are not as healthy as you might think. The Japanese would do well to switch the Trump staples of burgers, pizza, fries, and diet coke.

The three horsemen of the US death-toll:  Automobiles, firearms, and poisoning (drugs). 2008 data.

The three horsemen of the US death-toll: Automobiles, firearms, and poisoning (drugs). 2008 data.

At this point you can ask why our lives are so much shorter than the Japanese, on average. The difference in smoking and weight-related diseases are significant but explain only part of the story. There is also guns. About 0.7% of Americans are killed by guns, compared to 0.07% of Japanese. Still, guns give Americans a not-unjustified sense of safety from worse crime. Then there is traffic death, 1.5% in the US vs 0.5% in Japan. But the biggest single reason that Americans live shorter lives  is drugs. Drugs kill about 1.5% of Americans, but mostly the young and middle ages. They show up in US death statistics mostly as over-dose and unintentional poisoning (overdose deaths), but also contribute to many other problems like dementia in the old. Drugs and poisoning do not shown on the chart above, because the rate of both is insignificant in Japan, but it is the single main cause of US death in middle age Americans.

The king of the killer drugs are the opioids, a problem that was bad in the 60s, the days of Mother’s Little helper, but that have gotten dramatically worse in the last 20 years as the chart above shows. Often it is a doctor who gets us hooked on the opioids. The doctor may think it’s a favor to us to keep us from pain, but it’s also a favor to him since the drug companies give kickbacks. Often people manage to become un-hooked, but then some doctor comes by and re-hooks us up. Unlike LSD or cocaine, opioid drugs strike women and men equally. It is the single major reason we live 5 1/2 years shorter than the Japanese, with a life-span that is shrinking.

Drug overuse seems like the most serious health problem Americans face, and we seem intent on ignoring it. The other major causes of death are declining, but drug-death numbers keep rising. By 2007, more people died of drugs than guns, and nearly as many as from automobile accidents. It’s passed automobile accidents since then. A first suggestion here: do not elect any politician who has taken significant money from the drug companies. A second suggestion: avoid the Japanese diet.

Robert Buxbaum, April 28, 2019.

Measles, anti-vaxers, and the pious lies of the CDC.

Measles is a horrible disease that contributed to the downfall that had been declared dead in the US, wiped out by immunization, but it has reappeared. A lot of the blame goes to folks who refuse to vaccinate: anti-vaxers in the popular press. The Center for Disease Control is doing its best to promote to stop the anti-vaxers, and promote vaccination for all, but in doing so, I find they present the risks of measles worse than they are. While I’m sympathetic to the goal, I’m not a fan of bending the truth. Lies hurt the people who speak them and the ones who believe them, and they can hurt the health of immune-compromized children who are pushed to vaccinate. You will see my arguments below.

The CDC’s most-used value for the mortality rate for measles is 0.3%. It appears, for example, in line two of the following table from Orenstein et al., 2004. This table also includes measles-caused complications, broken down by type and patient age; read the full article here.

Measles complications, death rates, US, 1987-2000, CDC.

Measles complications, death rates, US, 1987-2000, CDC, Orenstein et. al. 2004.

The 0.3% average mortality rate seems more in tune with the 1800s than today. Similarly, note that the risk of measles-associated encephalitis is given as 10.1%, higher than the risk of measles-diarrhea, 8.2%. Do 10.1% of measles cases today produce encephalitis, a horrible, brain-swelling disease that often causes death. Basically everyone in the 1950s and early 60s got measles (I got it twice), but there were only 1000 cases of encephalitis per year. None of my classmates got encephalitis, and none died. How is this possible; it was the era before antibiotics. Even Orenstein et. al comment that their measles mortality rates appear to be far higher today than in the 1940s and 50s. The article explains that the increase to 3 per thousand, “is most likely due to more complete reporting of measles as a cause of death, HIV infections, and a higher proportion of cases among preschool-aged children and adults.”

A far more likely explanation is that the CDC value is wrong. That the measles cases that were reported and certified as such are the ones that are the most severe. There were about 450 measles deaths per year in the 1940s and 1950s, and 408 in 1962, the last year before the MMR vaccine was developed and by Dr. Hilleman of Merck (a great man of science, forgotten). In the last two decades there were some 2000 measles cases reported US cases but only one measles death. A significant decline in cases, but the ratio does not support the CDC’s death rate. For a better estimate, I propose to divide the total number of measles deaths in 1962 by the average birth rate in the late 1950s. That is to say, I propose to divide 408 by the 4.3 million births per year. From this, I calculate a mortality rate just under 0.01% in 1962, That’s 1/30th the CDC number, and medicine has improved since 1962.

I suspect that the CDC inflates the mortality numbers, in part by cherry-picking its years. It inflates them further by treating “reported measles cases.” as if they were all measles cases. I suspect that the reported cases in these years were mainly the very severe ones. Mild case measles clears up before being reported or certified as measles. This seems the only normal explanation for why 10.1% of cases include encephalitis, and only 8.2% diarrhea. It’s why the CDC’s mortality numbers suggest that, despite antibiotics, our death rate has gone up by a factor of 30 since 1962.

Consider the experience of people who lived in the early 60s. Most children of my era went to public elementary schools with some 1000 other students, all of whom got measles. By the CDC’s mortality number, we should have seen three measles deaths per school, and 101 cases of encephalitis. In reality, if there had been one death in my school it would have been big news, and it’s impossible that 10% of my classmates got encephalitis. Instead, in those years, only 48,000 people were hospitalized per year for measles, and 1,000 of these suffered encephalitis (CDC numbers, reported here).

To see if vaccination is a good idea, lets now consider the risk of vaccination. The CDC reports their vaccine “is virtually risk free”, but what does risk-free mean? A British study finds vaccination-caused neurological damage in 1/365,000 MMR vaccinations, a rate of 0.00027%, with a small fraction leading to death. These problems are mostly found in immunocompromised patients. I will now estimate the neurological risk for actual measles based on the ratio of encephalitis to births, as before using the average birth rate as my estimate for measles cases; 1000/4,300,000 = 0.023%. This is far lower than the risk the CDC reports, and more in line with experience.

The risk for neurological damage from measles that I calculate is 86 times higher risk than the neurological risk from vaccination, suggesting vaccination is a very good thing, on average: The vast majority of people should get vaccinated. But for people with a weakened immune system, my calculations suggest it is worthwhile to not immunize at 12 months as doctors recommend. The main cause of vaccination death is encephalitis, but this only happens in patients with weakened immune systems. If your child’s immune system is weakened, even by a cold, I’d suggest you wait 1-3 months, and would hope that your doctor would concur. If your child has AIDS, ALS, Lupus, or any other, long-term immune problem, you should not vaccinate at all. Not vaccinating your immune-weakened child will weaken the herd immunity, but will protect your child.

We live in a country with significant herd immunity: Even if there were a measles outbreak, it is unlikely there would be 500 cases at one time, and your child’s chance of running into one of them in the next month is very small assuming that you don’t take your child to Disneyland, or to visit relatives from abroad. Also, don’t hang out with anti-vaxers if you are not vaccinated. Associating with anti-vaxers will dramatically increase your child’s risk of infection.

As for autism: there appears to be no autism advantage to pushing off vaccination. Signs of autism typically appear around 12 months, the same age that most children receive their first-stage MMR shot, so some people came to associate the two. Parents who push-off vaccination do not push-off the child’s chance of developing autism, they just increase the chance their child will get measles, and that their child will infect others. Schools are right to bar such children, IMHO.

I’ve noticed that, with health care in, particular, there is a tendency for researchers to mangle statistics so that good things seem better than they are. Health food: is not necessarily so healthy as they say; nor is weight lossBicycle helmets: ditto. Sometimes this bleeds over to outright lies. Generic modified grains were branded as cancer-causing based on outright lies and  missionary zeal. I feel that I help a bit, in part by countering individual white lies; in part by teaching folks how to better read statistic arguments. If you are a researcher, I strongly suggest you do not set up your research with a hypothesis so that only one outcome will be publishable or acceptable. Here’s how.

Robert E. Buxbaum, December 9, 2018.